
Rachel A Davey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/57855/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	The role of the androgen receptor in the pathogenesis of obesity and its utility as a target for obesity treatments. Obesity Reviews, 2022, 23, e13429.	6.5	9
2	The AR in bone marrow progenitor cells protects against short-term high caloric diet induced weight gain in male mice Journal of Molecular Endocrinology, 2022, , .	2.5	0
3	Changes in white adipose tissue gene expression in a randomized control trial of dieting obese men with lowered serum testosterone alone or in combination with testosterone treatment. Endocrine, 2021, 73, 463-471.	2.3	0
4	The calcitonin receptor regulates osteocyte lacunae acidity during lactation in mice. Journal of Endocrinology, 2021, 249, 31-41.	2.6	2
5	Neuronal androgen receptor is required for activity dependent enhancement of peripheral nerve regeneration. Developmental Neurobiology, 2021, 81, 411-423.	3.0	7
6	Vitamin D receptor expression in mature osteoclasts reduces bone loss due to low dietary calcium intake in male mice. Journal of Steroid Biochemistry and Molecular Biology, 2021, 210, 105857.	2.5	6
7	Distinct roles of androgen receptor, estrogen receptor alpha, and BCL6 in the establishment of sex-biased DNA methylation in mouse liver. Scientific Reports, 2021, 11, 13766.	3.3	7
8	Genetic Depletion of Amylin/Calcitonin Receptors Improves Memory and Learning in Transgenic Alzheimer's Disease Mouse Models. Molecular Neurobiology, 2021, 58, 5369-5382.	4.0	7
9	Paracrine signalling by cardiac calcitonin controls atrial fibrogenesis and arrhythmia. Nature, 2020, 587, 460-465.	27.8	55
10	Sex-specific adipose tissue imprinting of regulatory T cells. Nature, 2020, 579, 581-585.	27.8	141
11	Androgens stimulate erythropoiesis through the DNAâ€binding activity of the androgen receptor in nonâ€hematopoietic cells. European Journal of Haematology, 2020, 105, 247-254.	2.2	8
12	The androgen receptor in the hypothalamus positively regulates hind-limb muscle mass and voluntary physical activity in adult male mice. Journal of Steroid Biochemistry and Molecular Biology, 2019, 189, 187-194.	2.5	10
13	The androgen receptor in bone marrow progenitor cells negatively regulates fat mass. Journal of Endocrinology, 2018, 237, 15-27.	2.6	5
14	Absence of vitamin D receptor in mature osteoclasts results in altered osteoclastic activity and bone loss. Journal of Steroid Biochemistry and Molecular Biology, 2018, 177, 77-82.	2.5	17
15	Cyclic AC253, a novel amylin receptor antagonist, improves cognitive deficits in a mouse model of Alzheimer's disease. Alzheimer's and Dementia: Translational Research and Clinical Interventions, 2017, 3, 44-56.	3.7	24
16	Actin alpha cardiac muscle 1 gene expression is upregulated in the skeletal muscle of men undergoing androgen deprivation therapy for prostate cancer. Journal of Steroid Biochemistry and Molecular Biology, 2017, 174, 56-64.	2.5	22
17	Androgen Action via the Androgen Receptor in Neurons Within the Brain Positively Regulates Muscle Mass in Male Mice. Endocrinology, 2017, 158, 3684-3695.	2.8	26
18	Reduced bone formation markers, and altered trabecular and cortical bone mineral densities of non-paretic femurs observed in rats with ischemic stroke: A randomized controlled pilot study. PLoS ONE, 2017, 12, e0172889.	2.5	6

RACHEL A DAVEY

#	Article	IF	CITATIONS
19	Osteoclast TGF-β Receptor Signaling Induces Wnt1 Secretion and Couples Bone Resorption to Bone Formation. Journal of Bone and Mineral Research, 2016, 31, 76-85.	2.8	73
20	Wnt Signaling Inhibits Osteoclast Differentiation by Activating Canonical and Noncanonical cAMP/PKA Pathways. Journal of Bone and Mineral Research, 2016, 31, 65-75.	2.8	119
21	Sex-related differences in the skeletal phenotype of aged vitamin D receptor global knockout mice. Journal of Steroid Biochemistry and Molecular Biology, 2016, 164, 361-368.	2.5	14
22	Androgen Receptor Structure, Function and Biology: From Bench to Bedside. Clinical Biochemist Reviews, 2016, 37, 3-15.	3.3	265
23	Androgen Receptor Action in Osteoblasts in Male Mice Is Dependent on Their Stage of Maturation. Journal of Bone and Mineral Research, 2015, 30, 809-823.	2.8	17
24	Response to Wnt Signaling Pathways. Journal of Bone and Mineral Research, 2015, 30, 2135-2136.	2.8	1
25	The androgen receptor has no direct antiresorptive actions in mouse osteoclasts. Molecular and Cellular Endocrinology, 2015, 411, 198-206.	3.2	34
26	A Role for the Calcitonin Receptor to Limit Bone Loss During Lactation in Female Mice by Inhibiting Osteocytic Osteolysis. Endocrinology, 2015, 156, 3203-3214.	2.8	47
27	Human androgen deficiency: insights gained from androgen receptor knockout mouse models. Asian Journal of Andrology, 2014, 16, 169.	1.6	54
28	Normal phenotype in conditional androgen receptor (AR) exon 3-floxed <i>neomycin</i> -negative male mice. Endocrine Research, 2014, 39, 130-135.	1.2	7
29	Blunted sympathoinhibitory responses in obesityâ€related hypertension are due to aberrant central but not peripheral signalling mechanisms. Journal of Physiology, 2014, 592, 1705-1720.	2.9	12
30	The pleiotropic effects of vitamin D in bone. Journal of Steroid Biochemistry and Molecular Biology, 2013, 136, 190-194.	2.5	55
31	Calcitonin: Physiology or fantasy?. Journal of Bone and Mineral Research, 2013, 28, 973-979.	2.8	71
32	A physiological role for androgen actions in the absence of androgen receptor DNA binding activity. Molecular and Cellular Endocrinology, 2012, 348, 189-197.	3.2	27
33	Identification of gene pathways altered by deletion of the androgen receptor specifically in mineralizing osteoblasts and osteocytes in mice. Journal of Molecular Endocrinology, 2012, 49, 1-10.	2.5	33
34	Decreased body weight in young Osterix-Cre transgenic mice results in delayed cortical bone expansion and accrual. Transgenic Research, 2012, 21, 885-893.	2.4	82
35	The role of the calcitonin receptor in protecting against induced hypercalcemia is mediated via its actions in osteoclasts to inhibit bone resorption. Bone, 2011, 48, 354-361.	2.9	30
36	DNA-binding-dependent androgen receptor signaling contributes to gender differences and has physiological actions in males and females. Journal of Endocrinology, 2010, 206, 93-103.	2.6	37

RACHEL A DAVEY

#	Article	IF	CITATIONS
37	Mineralization and Bone Resorption Are Regulated by the Androgen Receptor in Male Mice. Journal of Bone and Mineral Research, 2009, 24, 621-631.	2.8	98
38	Calcitonin Receptor Plays a Physiological Role to Protect Against Hypercalcemia in Mice. Journal of Bone and Mineral Research, 2008, 23, 1182-1193.	2.8	76
39	Intermittent Fugu parathyroid hormone 1 (1–34) is an anabolic bone agent in young male rats and osteopenic ovariectomized rats. Bone, 2008, 42, 1164-1174.	2.9	10
40	A floxed allele of the <i>androgen receptor</i> gene causes hyperandrogenization in male mice. Physiological Genomics, 2008, 33, 133-137.	2.3	30
41	Impaired skeletal muscle development and function in male, but not female, genomic <i>androgen receptor</i> knockout mice. FASEB Journal, 2008, 22, 2676-2689.	0.5	179
42	Severe Subfertility in Mice with Androgen Receptor Inactivation in Sex Accessory Organs But Not in Testis. Endocrinology, 2008, 149, 3330-3338.	2.8	39
43	Oestradiol-induced spermatogenesis requires a functional androgen receptor. Reproduction, Fertility and Development, 2008, 20, 861.	0.4	24
44	Disruption of Prostate Epithelial Androgen Receptor Impedes Prostate Lobe-Specific Growth and Function. Endocrinology, 2007, 148, 2264-2272.	2.8	75
45	Osteoblast Deletion of Exon 3 of the Androgen Receptor Gene Results in Trabecular Bone Loss in Adult Male Mice. Journal of Bone and Mineral Research, 2007, 22, 347-356.	2.8	117
46	Severe combined hyperlipidaemia and retinal lipid infiltration in a patient with Type 2 diabetes mellitus. Lipids in Health and Disease, 2006, 5, 29.	3.0	5
47	Effects of Amylin Deficiency on Trabecular Bone in Young Mice Are Sex-Dependent. Calcified Tissue International, 2006, 78, 398-403.	3.1	26
48	Current and future approaches using genetically modified mice in endocrine research. American Journal of Physiology - Endocrinology and Metabolism, 2006, 291, E429-E438.	3.5	57
49	Effects of estradiol and dihydrotestosterone on osteoblast gene expression in osteopenic ovariectomized rats. Journal of Bone and Mineral Metabolism, 2005, 23, 212-218.	2.7	12
50	The effects of salmon calcitonin-induced hypocalcemia on bone metabolism in ovariectomized rats. Journal of Bone and Mineral Metabolism, 2005, 23, 359-365.	2.7	11
51	Genetically Modified Animal Models as Tools for Studying Bone and Mineral Metabolism. Journal of Bone and Mineral Research, 2004, 19, 882-892.	2.8	35
52	Transgenic mice that express Cre recombinase in osteoclasts. Genesis, 2004, 39, 178-185.	1.6	91
53	Amylin inhibits bone resorption while the calcitonin receptor controls bone formation in vivo. Journal of Cell Biology, 2004, 164, 509-514.	5.2	183
54	Effects of Dihydrotestrone on Osteoblast Gene Expression in Osteopenic Ovariectomized Rats. Endocrine Research, 2004, 30, 361-368.	1.2	4