
Yoshiya Hashimoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5785340/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Development of .BETAtricalcium Phosphate/Collagen Sponge Composite for Bone Regeneration. Dental Materials Journal, 2006, 25, 138-144.	0.8	76
2	Preparation of injectable 3D-formed .BETAtricalcium phosphate bead/alginate composite for bone tissue engineering. Dental Materials Journal, 2008, 27, 827-834.	0.8	74
3	Estrogenic Activity of Dental Materials and Bisphenol-A Related Chemicals in vitro Dental Materials Journal, 2000, 19, 245-262.	0.8	66
4	Estrogenic activity of tissue conditioners in vitro. Dental Materials, 2003, 19, 341-346.	1.6	49
5	Alveolar bone tissue engineering using composite scaffolds for drug delivery. Japanese Dental Science Review, 2010, 46, 188-192.	2.0	37
6	The osteoblastic differentiation ability of human dedifferentiated fat cells is higher than that of adipose stem cells from the buccal fat pad. Clinical Oral Investigations, 2014, 18, 1893-1901.	1.4	37
7	Enhanced bone regeneration by gelatin-β-tricalcium phosphate composites enabling controlled release of bFGF. Journal of Tissue Engineering and Regenerative Medicine, 2014, 8, 604-611.	1.3	33
8	Dedifferentiated fat cells differentiate into osteoblasts in titanium fiber mesh. Cytotechnology, 2013, 65, 15-22.	0.7	29
9	Local Controlled Release of Polyphenol Conjugated with Gelatin Facilitates Bone Formation. International Journal of Molecular Sciences, 2015, 16, 14143-14157.	1.8	28
10	In Vitro and In Vivo Osteogenic Activity of Titanium Implants Coated by Pulsed Laser Deposition with a Thin Film of Fluoridated Hydroxyapatite. International Journal of Molecular Sciences, 2018, 19, 1127.	1.8	28
11	Epigallocatechin Gallate-Modified Gelatin Sponges Treated by Vacuum Heating as a Novel Scaffold for Bone Tissue Engineering. Molecules, 2018, 23, 876.	1.7	27
12	Supplementation of Strontium to a Chondrogenic Medium Promotes Chondrogenic Differentiation of Human Dedifferentiated Fat Cells. Tissue Engineering - Part A, 2015, 21, 1695-1704.	1.6	25
13	In vitro evaluation of H2O2 hydrothermal treatment of aged titanium surface to enhance biofunctional activity. Dental Materials Journal, 2013, 32, 115-121.	0.8	23
14	Effectiveness of scaffolds with pre-seeded mesenchymal stem cells in bone regeneration —Assessment of osteogenic ability of scaffolds implanted under the periosteum of the cranial bone of rats—. Dental Materials Journal, 2010, 29, 673-681.	0.8	22
15	Application of Green Tea Catechin for Inducing the Osteogenic Differentiation of Human Dedifferentiated Fat Cells in Vitro. International Journal of Molecular Sciences, 2015, 16, 27988-28000.	1.8	21
16	Human Gingival Integration-Free iPSCs; a Source for MSC-Like Cells. International Journal of Molecular Sciences, 2015, 16, 13633-13648.	1.8	20
17	Application of fluoridated hydroxyapatite thin film coatings using KrF pulsed laser deposition. Dental Materials Journal, 2018, 37, 408-413.	0.8	19
18	Atomic force microscopy observation of enamel surfaces treated with selfetching primer. Dental Materials Journal, 2013, 32, 181-188.	0.8	18

Уозніуа Назнімото

#	Article	IF	CITATIONS
19	Biocompatibility of a High-Plasticity, Calcium Silicate-Based, Ready-to-Use Material. Materials, 2020, 13, 4770.	1.3	18
20	Effects on bone regeneration when collagen model polypeptides are combined with various sizes of alpha-tricalcium phosphate particles. Dental Materials Journal, 2011, 30, 913-922.	0.8	17
21	Interferon-Î ³ enhances the efficacy of autogenous bone grafts by inhibiting postoperative bone resorption in rat calvarial defects. Journal of Prosthodontic Research, 2016, 60, 167-176.	1.1	17
22	Application of hydroxyapatite nanoparticle-assembled powder using basic fibroblast growth factor as a pulp-capping agent. Dental Materials Journal, 2019, 38, 713-720.	0.8	16
23	Cytocompatibility of New Phthalate Ester-free Tissue Conditioners in vitro Dental Materials Journal, 2002, 21, 118-132.	0.8	15
24	The utility of human dedifferentiated fat cells in bone tissue engineering in vitro. Cytotechnology, 2015, 67, 75-84.	0.7	15
25	Augmentation of Bone Regeneration by Depletion of Stress-Induced Senescent Cells Using Catechin and Senolytics. International Journal of Molecular Sciences, 2020, 21, 4213.	1.8	15
26	Cytocompatibility of a Tissue Conditioner Containing Vinyl Ester as a Plasticizer. Dental Materials Journal, 2007, 26, 785-791.	0.8	12
27	Porous Alpha-Tricalcium Phosphate with Immobilized Basic Fibroblast Growth Factor Enhances Bone Regeneration in a Canine Mandibular Bone Defect Model. Materials, 2016, 9, 853.	1.3	12
28	Comparison of Osteogenic Potentials of Dental Pulp and Bone Marrow Mesenchymal Stem Cells Using the New Cell Transplantation Platform, CellSaic, in a Rat Congenital Cleft-Jaw Model. International Journal of Molecular Sciences, 2021, 22, 9478.	1.8	12
29	In vitro human periodontal ligament-like tissue formation with porous poly-l-lactide matrix. Materials Science and Engineering C, 2013, 33, 3273-3280.	3.8	11
30	Releasing Behavior of Lipopolysaccharide from Gelatin Modulates Inflammation, Cellular Senescence, and Bone Formation in Critical-Sized Bone Defects in Rat Calvaria. Materials, 2020, 13, 95.	1.3	11
31	Periodontal regeneration induced by porous alpha-tricalcium phosphate with immobilized basic fibroblast growth factor in a canine model of 2-wall periodontal defects. Medical Molecular Morphology, 2018, 51, 48-56.	0.4	10
32	Immunomodulatory Properties and Osteogenic Activity of Polyetheretherketone Coated with Titanate Nanonetwork Structures. International Journal of Molecular Sciences, 2022, 23, 612.	1.8	10
33	Hydroxyapatite Film Coating by Er:YAG Pulsed Laser Deposition Method for the Repair of Enamel Defects. Materials, 2021, 14, 7475.	1.3	10
34	Cell survival and gene expression under compressive stress in a three-dimensional in vitro human periodontal ligament-like tissue model. Cytotechnology, 2016, 68, 249-260.	0.7	9
35	Cytocompatibility and Viscoelastic Properties of Phthalate Ester-free Tissue Conditioners. Dental Materials Journal, 2004, 23, 412-418.	0.8	8
36	Bone Regeneration Using Rat-Derived Dedifferentiated Fat Cells Combined with Activated Platelet-Rich Plasma. Materials, 2020, 13, 5097.	1.3	8

Уозніуа Назнімото

#	Article	IF	CITATIONS
37	Evidence that HSP70 Gene Expression May be Useful for Assessing the Cytocompatibility of Dental Biomaterials. Dental Materials Journal, 2004, 23, 184-189.	0.8	7
38	The Effect of Interferon-Î ³ and Zoledronate Treatment on Alpha-Tricalcium Phosphate/Collagen Sponge-Mediated Bone-Tissue Engineering. International Journal of Molecular Sciences, 2015, 16, 25678-25690.	1.8	7
39	Effect of Argon-Based Atmospheric Pressure Plasma Treatment on Hard Tissue Formation on Titanium Surface. International Journal of Molecular Sciences, 2021, 22, 7617.	1.8	7
40	Sustained Release of Catechin from Gelatin and Its Effect on Bone Formation in Critical Sized Defects in Rat Calvaria. Journal of Hard Tissue Biology, 2020, 29, 77-84.	0.2	7
41	Structural Characterization and Osseointegrative Properties of Pulsed Laser-Deposited Fluorinated Hydroxyapatite Films on Nano-Zirconia for Implant Applications. International Journal of Molecular Sciences, 2022, 23, 2416.	1.8	7
42	Characterization of Hydroxyapatite Film Obtained by Er:YAG Pulsed Laser Deposition on Sandblasted Titanium: An In Vitro Study. Materials, 2022, 15, 2306.	1.3	7
43	A novel membrane-type apatite scaffold engineered by pulsed laser ablation. Dental Materials Journal, 2015, 34, 345-350.	0.8	6
44	In Vitro and In Vivo Evaluation of Titanium Surface Modification for Biological Aging by Electrolytic Reducing Ionic Water. Applied Sciences (Switzerland), 2019, 9, 713.	1.3	6
45	Effect of an injectable 3D scaffold for osteoblast differentiation depends on bead size. Bio-Medical Materials and Engineering, 2009, 19, 391-400.	0.4	5
46	Bioactivity Evaluation of Biphasic Hydroxyapatite Bone Substitutes Immersed and Grown with Supersaturated Calcium Phosphate Solution. Materials, 2021, 14, 5143.	1.3	5
47	Enhancement of Bone-Forming Ability on Beta-Tricalcium Phosphate by Modulating Cellular Senescence Mechanisms Using Senolytics. International Journal of Molecular Sciences, 2021, 22, 12415.	1.8	5
48	Bone Regeneration With a Collagen Model Polypeptides/α-Tricalcium Phosphate Sponge in a Canine Tibia Defect Model. Implant Dentistry, 2015, Publish Ahead of Print, 197-203.	1.7	4
49	Periodontal Regeneration Using Cultured Coral Scaffolds in Class II Furcation Defects in Dogs. Journal of Hard Tissue Biology, 2019, 28, 329-334.	0.2	4
50	Gas Permeability of Mold during Freezing Process Alters the Pore Distribution of Gelatin Sponge and Its Bone-Forming Ability. Materials, 2020, 13, 4705.	1.3	3
51	Bone Regeneration by Dedifferentiated Fat Cells Using Composite Sponge of Alfa-Tricalcium Phosphate and Gelatin in a Rat Calvarial Defect Model. Applied Sciences (Switzerland), 2021, 11, 11941.	1.3	3
52	Cell Adhesion Ability of α-Tricalcium Phosphate Films Formed on Titanium Substrates by an Er:YAG Laser Deposition Method: Imprecations for Management of Peri-Implant Inflammation. Key Engineering Materials, 2019, 829, 157-163.	0.4	1
53	Comparison of the characteristics of mesenchymal stem-like cells derived by integration-free induced pluripotent stem cells in different single-cell culture media under feeder-free conditions. Medical Molecular Morphology, 2019, 52, 147-155.	0.4	1
54	Accelerated construction of an <i>in vitro</i> model of human periodontal ligament tissue: vacuum plasma combined with fibronectin coating and a polydimethylsiloxane matrix. PeerJ, 2019, 7, e7036.	0.9	1

#	Article	IF	CITATIONS
55	The Effect of Different Surgical Instruments for Bone Regeneration under the Surgery of Bone Defect on Rat Calvaria. Journal of Hard Tissue Biology, 2022, 31, 63-70.	0.2	0