
Henry Fechner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5785274/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Colchicine prevents disease progression in viral myocarditis via modulating the NLRP3 inflammasome in the cardiosplenic axis. ESC Heart Failure, 2022, 9, 925-941.	3.1	23
2	miR-375- and miR-1-Regulated Coxsackievirus B3 Has No Pancreas and Heart Toxicity But Strong Antitumor Efficiency in Colorectal Carcinomas. Human Gene Therapy, 2021, 32, 216-230.	2.7	14
3	Coxsackievirus B3—Its Potential as an Oncolytic Virus. Viruses, 2021, 13, 718.	3.3	17
4	Silencing of Mcl-1 overcomes resistance of melanoma cells against TRAIL-armed oncolytic adenovirus by enhancement of apoptosis. Journal of Molecular Medicine, 2021, 99, 1279-1291.	3.9	3
5	Virotherapy in Germany—Recent Activities in Virus Engineering, Preclinical Development, and Clinical Studies. Viruses, 2021, 13, 1420.	3.3	19
6	Application Route and Immune Status of the Host Determine Safety and Oncolytic Activity of Oncolytic Coxsackievirus B3 Variant PD-H. Viruses, 2021, 13, 1918.	3.3	4
7	MiRâ€375â€mediated suppression of engineered coxsackievirus B3 in pancreatic cells. FEBS Letters, 2020, 594, 763-775.	2.8	9
8	Development of a new mouse model for coxsackievirus-induced myocarditis by attenuating coxsackievirus B3 virulence in the pancreas. Cardiovascular Research, 2020, 116, 1756-1766.	3.8	16
9	Single-Point Mutations within the Coxsackie B Virus Receptor-Binding Site Promote Resistance against Soluble Virus Receptor Traps. Journal of Virology, 2020, 94, .	3.4	2
10	Variability in Cardiac miRNA-122 Level Determines Therapeutic Potential of miRNA-Regulated AAV Vectors. Molecular Therapy - Methods and Clinical Development, 2020, 17, 1190-1201.	4.1	13
11	Mclâ€1 targeting strategies unlock the proapoptotic potential of TRAIL in melanoma cells. Molecular Carcinogenesis, 2020, 59, 1256-1268.	2.7	11
12	Protein modification with ISC15 blocks coxsackievirus pathology by antiviral and metabolic reprogramming. Science Advances, 2020, 6, eaay1109.	10.3	27
13	Early Treatment of Coxsackievirus B3–Infected Animals With Soluble Coxsackievirus-Adenovirus Receptor Inhibits Development of Chronic Coxsackievirus B3 Cardiomyopathy. Circulation: Heart Failure, 2019, 12, e005250.	3.9	14
14	RNA interference-based functional knockdown of the voltage-gated potassium channel Kv7.2 in dorsal root ganglion neurons after in vitro and in vivo gene transfer by adeno-associated virus vectors. Molecular Pain, 2018, 14, 174480691774966.	2.1	5
15	Generation of a 3D Liver Model Comprising Human Extracellular Matrix in an Alginate/Gelatin-Based Bioink by Extrusion Bioprinting for Infection and Transduction Studies. International Journal of Molecular Sciences, 2018, 19, 3129.	4.1	107
16	Immunomodulation by adoptive regulatory Tâ€cell transfer improves Coxsackievirus B3â€induced myocarditis. FASEB Journal, 2018, 32, 6066-6078.	0.5	42
17	Heparan Sulfate Binding Coxsackievirus B3 Strain PD: A Novel Avirulent Oncolytic Agent Against Human Colorectal Carcinoma. Human Gene Therapy, 2018, 29, 1301-1314.	2.7	19
18	Silencing Genes in the Heart. Methods in Molecular Biology, 2017, 1521, 17-39.	0.9	5

Henry Fechner

#	Article	IF	CITATIONS
19	Infection of iPSC Lines with Miscarriage-Associated Coxsackievirus and Measles Virus and Teratogenic Rubella Virus as a Model for Viral Impairment of Early Human Embryogenesis. ACS Infectious Diseases, 2017, 3, 886-897.	3.8	15
20	NOD2 (Nucleotide-Binding Oligomerization Domain 2) Is a Major Pathogenic Mediator of Coxsackievirus B3-Induced Myocarditis. Circulation: Heart Failure, 2017, 10, .	3.9	60
21	Virotherapy Research in Germany: From Engineering to Translation. Human Gene Therapy, 2017, 28, 800-819.	2.7	19
22	Anti-adenoviral Artificial MicroRNAs Expressed from AAV9 Vectors Inhibit Human Adenovirus Infection in Immunosuppressed Syrian Hamsters. Molecular Therapy - Nucleic Acids, 2017, 8, 300-316.	5.1	18
23	MicroRNA-regulated viral vectors for gene therapy. World Journal of Experimental Medicine, 2016, 6, 37.	1.7	64
24	Biological antivirals for treatment of adenovirus infections. Antiviral Therapy, 2016, 21, 559-566.	1.0	13
25	The Coxsackievirus and Adenovirus Receptor: Glycosylation and the Extracellular D2 Domain Are Not Required for Coxsackievirus B3 Infection. Journal of Virology, 2016, 90, 5601-5610.	3.4	15
26	Soluble coxsackie- and adenovirus receptor (sCAR-Fc); a highly efficient compound against laboratory and clinical strains of coxsackie-B-virus. Antiviral Research, 2016, 136, 1-8.	4.1	13
27	Study of Viral Vectors in a Three-dimensional Liver Model Repopulated with the Human Hepatocellular Carcinoma Cell Line HepG2. Journal of Visualized Experiments, 2016, , .	0.3	7
28	Enhanced suppression of adenovirus replication by triple combination of anti-adenoviral siRNAs, soluble adenovirus receptor trap sCAR-Fc and cidofovir. Antiviral Research, 2015, 120, 72-78.	4.1	13
29	Combination of RNA Interference and Virus Receptor Trap Exerts Additive Antiviral Activity in Coxsackievirus B3-induced Myocarditis in Mice. Journal of Infectious Diseases, 2015, 211, 613-622.	4.0	17
30	Application of modified antisense oligonucleotides and siRNAs as antiviral drugs. Future Medicinal Chemistry, 2015, 7, 1637-1642.	2.3	15
31	Use of a three-dimensional humanized liver model for the study of viral gene vectors. Journal of Biotechnology, 2015, 212, 134-143.	3.8	7
32	A Novel Artificial MicroRNA Expressing AAV Vector for Phospholamban Silencing in Cardiomyocytes Improves Ca2+ Uptake into the Sarcoplasmic Reticulum. PLoS ONE, 2014, 9, e92188.	2.5	19
33	Antibody-Mediated Enhancement of Parvovirus B19 Uptake into Endothelial Cells Mediated by a Receptor for Complement Factor C1q. Journal of Virology, 2014, 88, 8102-8115.	3.4	65
34	Application of Mutated miR-206 Target Sites Enables Skeletal Muscle-specific Silencing of Transgene Expression of Cardiotropic AAV9 Vectors. Molecular Therapy, 2013, 21, 924-933.	8.2	30
35	A Novel Method for the Quantification of Adeno-Associated Virus Vectors for RNA Interference Applications Using Quantitative Polymerase Chain Reaction and Purified Genomic Adeno-Associated Virus DNA as a Standard. Human Gene Therapy Methods, 2013, 24, 355-363.	2.1	11
36	Vaccine protection against lethal homologous and heterologous challenge using recombinant AAV vectors expressing codon-optimized genes from pandemic swine origin influenza virus (SOIV). Vaccine, 2011, 29, 1690-1699.	3.8	25

HENRY FECHNER

#	Article	IF	CITATIONS
37	Pharmacological and Biological Antiviral Therapeutics for Cardiac Coxsackievirus Infections. Molecules, 2011, 16, 8475-8503.	3.8	33
38	Virus-Host Coevolution in a Persistently Coxsackievirus B3-Infected Cardiomyocyte Cell Line. Journal of Virology, 2011, 85, 13409-13419.	3.4	45
39	Efficient Melanoma Cell Killing and Reduced Melanoma Growth in Mice by a Selective Replicating Adenovirus Armed with Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand. Human Gene Therapy, 2011, 22, 405-417.	2.7	13
40	Inhibition of adenovirus infections by siRNA-mediated silencing of early and late adenoviral gene functions. Antiviral Research, 2010, 88, 86-94.	4.1	27
41	Cardiac-targeted delivery of regulatory RNA molecules and genes for the treatment of heart failure. Cardiovascular Research, 2010, 86, 353-364.	3.8	39
42	Prevention of Cardiac Dysfunction in Acute Coxsackievirus B3 Cardiomyopathy by Inducible Expression of a Soluble Coxsackievirus-Adenovirus Receptor. Circulation, 2009, 120, 2358-2366.	1.6	67
43	Long-Term Cardiac-Targeted RNA Interference for the Treatment of Heart Failure Restores Cardiac Function and Reduces Pathological Hypertrophy. Circulation, 2009, 119, 1241-1252.	1.6	200
44	Combination of soluble coxsackievirus-adenovirus receptor and anti-coxsackievirus siRNAs exerts synergistic antiviral activity against coxsackievirus B3. Antiviral Research, 2009, 83, 298-306.	4.1	24
45	Cardiac-targeted RNA interference mediated by an AAV9 vector improves cardiac function in coxsackievirus B3 cardiomyopathy. Journal of Molecular Medicine, 2008, 86, 987-997.	3.9	73
46	A bidirectional Tet-dependent promotor construct regulating the expression of E1A for tight control of oncolytic adenovirus replication. Journal of Biotechnology, 2007, 127, 560-574.	3.8	13
47	Induction of Coxsackievirus-Adenovirus–Receptor Expression During Myocardial Tissue Formation and Remodeling. Circulation, 2003, 107, 876-882.	1.6	91
48	Molecular characterisation of the defective α1-antitrypsin alleles PI Mwürzburg (Pro369Ser), Mheerlen (Pro369Leu), and Q0lisbon (Thr68lle). European Journal of Human Genetics, 1999, 7, 321-331.	2.8	37