
Yu-Kyoung Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5784714/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enhancement of Biofunctionalization by Loading Manuka Oil on TiO2 Nanotubes. Nanomaterials, 2022, 12, 569.	1.9	4
2	Fabrication and Characterization of Biodegradable Gelatin Methacrylate/Biphasic Calcium Phosphate Composite Hydrogel for Bone Tissue Engineering. Nanomaterials, 2021, 11, 617.	1.9	24
3	Mammalian and Fish Gelatin Methacryloyl–Alginate Interpenetrating Polymer Network Hydrogels for Tissue Engineering. ACS Omega, 2021, 6, 17433-17441.	1.6	21
4	Characteristics of Biodegradable Gelatin Methacrylate Hydrogel Designed to Improve Osteoinduction and Effect of Additional Binding of Tannic Acid on Hydrogel. Polymers, 2021, 13, 2535.	2.0	3
5	Osteoblast cytocompatibility and antibacterial effect of ginger main compounds. Korean Journal of Dental Materials, 2021, 48, 159-174.	0.2	1
6	Stabilized Loading of Hyaluronic Acid-Containing Hydrogels into Magnesium-Based Cannulated Screws. ACS Biomaterials Science and Engineering, 2020, 6, 715-726.	2.6	8
7	Osteogenic Effect of a Biodegradable BMP-2 Hydrogel Injected into a Cannulated Mg Screw. ACS Biomaterials Science and Engineering, 2020, 6, 6173-6185.	2.6	5
8	Bio-corrosion behaviors of hyaluronic acid and cerium multi-layer films on degradable implant. Applied Surface Science, 2020, 515, 146070.	3.1	9
9	Osteogenesis-Related Gene Expression and Guided Bone Regeneration of a Strontium-Doped Calcium–Phosphate-Coated Titanium Mesh. ACS Biomaterials Science and Engineering, 2019, 5, 6715-6724.	2.6	18
10	Surface Modification of Pure Magnesium Mesh for Guided Bone Regeneration: In Vivo Evaluation of Rat Calvarial Defect. Materials, 2019, 12, 2684.	1.3	19
11	Radiographic and histologic effects of bone morphogenetic protein-2/hydroxyapatite within bioabsorbable magnesium screws in a rabbit model. Journal of Orthopaedic Surgery and Research, 2019, 14, 117.	0.9	13
12	Functions achieved by the hyaluronic acid derivatives coating and hydroxide film on bio-absorbed Mg. Applied Surface Science, 2019, 473, 31-39.	3.1	31
13	Comparative evaluation of the mechanical properties of CAD/CAM dental blocks. Odontology / the Society of the Nippon Dental University, 2019, 107, 360-367.	0.9	31
14	Magnesium-particle/polyurethane composite layer coating on titanium surfaces for orthopedic applications. European Polymer Journal, 2019, 112, 555-568.	2.6	16
15	Enhancement of bone formation on LBL-coated Mg alloy depending on the different concentration of BMP-2. Colloids and Surfaces B: Biointerfaces, 2019, 173, 437-446.	2.5	18
16	Effect of composite coating with poly-dopamine/PCL on the corrosion resistance of magnesium. International Journal of Polymeric Materials and Polymeric Biomaterials, 2019, 68, 328-337.	1.8	8
17	Gas formation and biological effects of biodegradable magnesium in a preclinical and clinical observation. Science and Technology of Advanced Materials, 2018, 19, 324-335.	2.8	71
18	Discoloration Resistance of Electrolytic Copper Foil Following 1,2,3-Benzotriazole Surface Treatment with Sodium Molybdate. Coatings, 2018, 8, 427.	1.2	3

Үи-Күоимд Кім

#	Article	IF	CITATIONS
19	Improvement of osteogenesis by a uniform PCL coating on a magnesium screw for biodegradable applications. Scientific Reports, 2018, 8, 13264.	1.6	27
20	Enhancing of Osseointegration with Propolis-Loaded TiO2 Nanotubes in Rat Mandible for Dental Implants. Materials, 2018, 11, 61.	1.3	27
21	<i>In Vitro</i> and <i> In Vivo</i> Characterization of N-Acetyl-L-Cysteine Loaded Beta-Tricalcium Phosphate Scaffolds. International Journal of Biomaterials, 2018, 2018, 1-11.	1.1	3
22	Effect of Ca-P compound formed by hydrothermal treatment on biodegradation and biocompatibility of Mg-3Al-1Zn-1.5Ca alloy; in vitro and in vivo evaluation. Scientific Reports, 2017, 7, 712.	1.6	18
23	Corrosion resistance and bioactivity enhancement of MAO coated Mg alloy depending on the time of hydrothermal treatment in Ca-EDTA solution. Scientific Reports, 2017, 7, 9061.	1.6	28
24	Effect upon biocompatibility and biocorrosion properties of plasma electrolytic oxidation in trisodium phosphate electrolytes. Biointerphases, 2016, 11, 011006.	0.6	6
25	Assessment of the surface properties and evaluation of toxicity of anodized pure Mg according to various stabilizers in electrolyte. Metals and Materials International, 2016, 22, 737-745.	1.8	1
26	Bioactive effect of alkali-heat treated TiO 2 nanotubes by water or acid treatment. Surface and Coatings Technology, 2016, 303, 256-267.	2.2	16
27	Biocorrosion behavior of biodegradable nanocomposite fibers coated layer-by-layer on AM50 magnesium implant. Materials Science and Engineering C, 2016, 58, 1232-1241.	3.8	43
28	Influence of Heat Treatment on Biocorrosion and Hemocompatibility of Biodegradable Mg-35Zn-3Ca Alloy. Advances in Materials Science and Engineering, 2015, 2015, 1-10.	1.0	4
29	Characterization and biocompatibility of a calcium-containing AZ31B alloy as a biodegradable material. Journal of Materials Science, 2015, 50, 4672-4682.	1.7	10
30	Surface medication of Ti–15Mo alloy by thermal oxidation: Evaluation of surface characteristics and corrosion resistance in Ringer's solution. Applied Surface Science, 2015, 356, 1117-1126.	3.1	26
31	Deposition of microarc oxidation–polycaprolactone duplex coating to improve the corrosion resistance of magnesium for biodegradable implants. Thin Solid Films, 2014, 562, 561-567.	0.8	61
32	Influence of lactic acid on degradation and biocompatibility of electrospun poly(<i>ε</i> aprolactone) fibers. Polymer International, 2014, 63, 1212-1218.	1.6	13
33	Effect of alkali and heat treatments for bioactivity of TiO2 nanotubes. Applied Surface Science, 2014, 321, 412-419.	3.1	36
34	Characterization and corrosion resistance of pure Mg modified by microâ€arc oxidation using phosphate electrolyte with/without NaOH. Surface and Interface Analysis, 2014, 46, 7-15.	0.8	15
35	Coloring and corrosion resistance of pure Mg modified by micro-arc oxidation method. International Journal of Precision Engineering and Manufacturing, 2014, 15, 1625-1630.	1.1	12
36	Surface modification of anodized Mg in ammonium hydrogen fluoride by various voltages. Surface and Coatings Technology, 2014, 259, 310-317.	2.2	18

Үи-Күоимд Кім

#	Article	IF	CITATIONS
37	Biodegradation and cytotoxic properties of pulse anodized Mg alloys. Metals and Materials International, 2013, 19, 353-360.	1.8	14
38	The Effects of Adding Elements of Zinc and Magnesium on Ag-Cu Eutectic Alloy for Warming Acupuncture. Evidence-based Complementary and Alternative Medicine, 2013, 2013, 1-10.	0.5	2
39	Surface Characteristics of Anodized AZ91D with Potassium Permanganate in Alkaline by Various Time. Advanced Materials Research, 2013, 704, 141-148.	0.3	0
40	Exploration of New Electroacupuncture Needle Material. Evidence-based Complementary and Alternative Medicine, 2012, 2012, 1-10.	0.5	7
41	Corrosion behavior and cytotoxicity of Mg–35Zn–3Ca alloy for surface modified biodegradable implant material. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2012, 100B, 911-923.	1.6	31
42	Musical Intervention Reduces Patients' Anxiety in Surgical Extraction of an Impacted Mandibular Third Molar. Journal of Oral and Maxillofacial Surgery, 2011, 69, 1036-1045.	0.5	77
43	Independent predictors of satisfaction in impacted third molar surgery patients. Community Dentistry and Oral Epidemiology, 2010, 38, 274-286.	0.9	11
44	Temperature driven morphological changes of hydrothermally prepared copper oxide nanoparticles. Surface and Interface Analysis, 2009, 41, 259-263.	0.8	27
45	Film characteristics of anodic oxidized AZ91D magnesium alloy by applied power. Surface and Interface Analysis, 2009, 41, 524-530.	0.8	12
46	Surface characteristics of AZ91D alloy anodized with various conditions. Surface and Interface Analysis, 2008, 40, 1270-1277.	0.8	14
47	Influence of electrolyte temperature on pure titanium modified by electrochemical treatment for implant. Surface and Interface Analysis, 2008, 40, 1538-1544.	0.8	5
48	Characterization of Surface Oxide Films and Cell Toxicity Evaluations with a Quenched Titanium Surface. Metals and Materials International, 2008, 14, 443-448.	1.8	6
49	Effect of Electrolyte pH on the Structure and in vitro Osteoblasts Response to Anodic Titanium Oxide. Metals and Materials International, 2008, 14, 607-613.	1.8	7