
E S Hinckley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5784609/publications.pdf Version: 2024-02-01

F S HINCKLEY

#	Article	IF	CITATIONS
1	Aspect control of water movement on hillslopes near the rain–snow transition of the Colorado Front Range. Hydrological Processes, 2014, 28, 74-85.	1.1	97
2	NEON terrestrial field observations: designing continentalâ€scale, standardized sampling. Ecosphere, 2012, 3, 1-17.	1.0	74
3	Which way do you lean? Using slope aspect variations to understand Critical Zone processes and feedbacks. Earth Surface Processes and Landforms, 2018, 43, 1133-1154.	1.2	70
4	Effects of Spatial Variability and Relic DNA Removal on the Detection of Temporal Dynamics in Soil Microbial Communities. MBio, 2020, 11, .	1.8	70
5	Introduction to the sampling designs of the <scp>N</scp> ational <scp>E</scp> cological <scp>O</scp> bservatory <scp>N</scp> etwork <scp>T</scp> errestrial <scp>O</scp> bservation <scp>S</scp> ystem. Ecosphere, 2016, 7, e01627.	1.0	67
6	A shift in sulfur-cycle manipulation from atmospheric emissions to agricultural additions. Nature Geoscience, 2020, 13, 597-604.	5.4	62
7	Rainfall intensification increases nitrate leaching from tilled but not no-till cropping systems in the U.S. Midwest. Agriculture, Ecosystems and Environment, 2020, 290, 106747.	2.5	52
8	Frontiers in Ecosystem Ecology from a Community Perspective: The Future is Boundless and Bright. Ecosystems, 2016, 19, 753-770.	1.6	40
9	Experimental removal and addition of leaf litter inputs reduces nitrate production and loss in a lowland tropical forest. Biogeochemistry, 2013, 113, 629-642.	1.7	36
10	Reductions in the deposition of sulfur and selenium to agricultural soils pose risk of future nutrient deficiencies. Communications Earth & Environment, 2021, 2, .	2.6	35
11	Nitrogen retention and transport differ by hillslope aspect at the rainâ€snow transition of the Colorado Front Range. Journal of Geophysical Research G: Biogeosciences, 2014, 119, 1281-1296.	1.3	32
12	Transformations, transport, and potential unintended consequences of high sulfur inputs to Napa Valley vineyards. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 14005-14010.	3.3	25
13	Soil-water dynamics and unsaturated storage during snowmelt following wildfire. Hydrology and Earth System Sciences, 2012, 16, 1401-1417.	1.9	23
14	The soil and plant biogeochemistry sampling design for The National Ecological Observatory Network. Ecosphere, 2016, 7, e01234.	1.0	21
15	Variation in Critical Zone Processes and Architecture across Slope Aspects. Procedia Earth and Planetary Science, 2014, 10, 28-33.	0.6	20
16	Optimizing Available Network Resources to Address Questions in Environmental Biogeochemistry. BioScience, 2016, 66, 317-326.	2.2	20
17	Evidence for accelerated weathering and sulfate export in high alpine environments. Environmental Research Letters, 2019, 14, 124092.	2.2	20
18	Rainfall Intensification Enhances Deep Percolation and Soil Water Content in Tilled and Noâ€Till Cropping Systems of the US Midwest. Vadose Zone Journal, 2018, 17, 1-12.	1.3	18

E S HINCKLEY

#	Article	IF	CITATIONS
19	Remote Sensing-Informed Zonation for Understanding Snow, Plant and Soil Moisture Dynamics within a Mountain Ecosystem. Remote Sensing, 2020, 12, 2733.	1.8	15
20	Not all water becomes wine: Sulfur inputs as an opportune tracer of hydrochemical losses from vineyards. Water Resources Research, 2008, 44, .	1.7	14
21	Integrating observations and models to determine the effect of seasonally frozen ground on hydrologic partitioning in alpine hillslopes in the Colorado Rocky Mountains, <scp>USA</scp> . Hydrological Processes, 2021, 35, e14374.	1.1	14
22	Short-term fates of high sulfur inputs in Northern California vineyard soils. Nutrient Cycling in Agroecosystems, 2011, 89, 135-142.	1.1	13
23	Digging Into the World Beneath Our Feet: Bridging Across Scales in the Age of Global Change. Eos, 2014, 95, 96-97.	0.1	13
24	The role of physical properties in controlling soil nitrogen cycling across a tundra-forest ecotone of the Colorado Rocky Mountains, U.S.A. Catena, 2020, 186, 104369.	2.2	11
25	From Patch to Catchment: A Statistical Framework to Identify and Map Soil Moisture Patterns Across Complex Alpine Terrain. Frontiers in Water, 2020, 2, .	1.0	10
26	Critical zone properties control the fate of nitrogen during experimental rainfall in montane forests of the Colorado Front Range. Biogeochemistry, 2017, 132, 213-231.	1.7	7
27	The Role of Hyporheic Connectivity in Determining Nitrogen Availability: Insights From an Intermittent Antarctic Stream. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2021JG006309.	1.3	7
28	Longâ€Term Trends in Acid Precipitation and Watershed Elemental Export From an Alpine Catchment of the Colorado Rocky Mountains, USA. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2020JG005683.	1.3	7
29	Fates and fingerprints of sulfur and carbon following wildfire in economically important croplands of California, U.S Science of the Total Environment, 2021, 750, 142179.	3.9	5
30	Synergies Among Environmental Science Research and Monitoring Networks: A Research Agenda. Earth's Future, 2021, 9, e2020EF001631.	2.4	5
31	Sulfur isotopes reveal agricultural changes to the modern sulfur cycle. Environmental Research Letters, 2022, 17, 054032.	2.2	4
32	Catchmentâ€scale observations at the Niwot Ridge <scp>longâ€ŧerm</scp> ecological research site. Hydrological Processes, 2021, 35, e14320.	1.1	3
33	Interactions between tall oatgrass invasion and soil nitrogen cycling. Oecologia, 2022, 199, 419-426.	0.9	О