Marc Mauduit

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5784574/publications.pdf

Version: 2024-02-01

159573 182417 2,818 59 30 51 citations h-index g-index papers 68 68 68 1982 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Sustainable Concepts in Olefin Metathesis. Angewandte Chemie - International Edition, 2007, 46, 6786-6801.	13.8	328
2	Copper-Catalyzed Asymmetric Conjugate Addition of Grignard Reagents to Trisubstituted Enones. Construction of All-Carbon Quaternary Chiral Centers. Journal of the American Chemical Society, 2006, 128, 8416-8417.	13.7	279
3	Regiodivergent 1,4 versus 1,6â€Asymmetric Copperâ€Catalyzed Conjugate Addition. Angewandte Chemie - International Edition, 2008, 47, 9122-9124.	13.8	174
4	Formation of Quaternary Chiral Centers by Nâ€Heterocyclic Carbene–Cu atalyzed Asymmetric Conjugate Addition Reactions with Grignard Reagents on Trisubstituted Cyclic Enones. Chemistry - A European Journal, 2010, 16, 9890-9904.	3.3	108
5	Aminocarbonyl Group Containing Hoveydaâ^Grubbs-Type Complexes: Synthesis and Activity in Olefin Metathesis Transformations. Journal of Organic Chemistry, 2008, 73, 4225-4228.	3.2	91
6	Continuous flow homogeneous alkene metathesis with built-in catalyst separation. Green Chemistry, 2011, 13, 1187.	9.0	86
7	Formation of Quaternary Stereogenic Centers by NHC–Cuâ€Catalyzed Asymmetric Conjugate Addition Reactions with Grignard Reagents on Polyconjugated Cyclic Enones. Chemistry - A European Journal, 2012, 18, 8731-8747.	3.3	80
8	Towards Longâ€Living Metathesis Catalysts by Tuning the Nâ€Heterocyclic Carbene (NHC) Ligand on Trifluoroacetamideâ€Activated Boomerang Ru Complexes. European Journal of Organic Chemistry, 2009, 2009, 4254-4265.	2.4	75
9	Multicomponent Synthesis of Unsymmetrical Unsaturated Nâ€Heterocyclic Carbene Precursors and Their Related Transitionâ€Metal Complexes. Angewandte Chemie - International Edition, 2013, 52, 14103-14107.	13.8	70
10	Visible Light Induced Rhodium(I)â€Catalyzed Câ^'H Borylation. Angewandte Chemie - International Edition, 2019, 58, 15244-15248.	13.8	69
11	Cyclic (Alkyl)(amino)carbenes (CAACs) in Ruthenium Olefin Metathesis. ACS Catalysis, 2021, 11, 1714-1748.	11.2	67
12	A Versatile and Highly <i>Z</i> -Selective Olefin Metathesis Ruthenium Catalyst Based on a Readily Accessible <i>N</i> -Heterocyclic Carbene. ACS Catalysis, 2018, 8, 3257-3262.	11.2	66
13	Selective Metathesis of α-Olefins from Bio-Sourced Fischer–Tropsch Feeds. ACS Catalysis, 2016, 6, 7970-7976.	11.2	62
14	Copperâ€Catalyzed Asymmetric Conjugate Addition of Dimethylzinc to Acylâ€ <i>N</i> àê€methylimidazole Michael Acceptors: a Powerful Synthetic Platform. Angewandte Chemie - International Edition, 2015, 54, 11830-11834.	13.8	58
15	Enantioselective 1,6-Conjugate Addition to Cyclic Dienones Catalyzed by the Cuâ^'DiPPAM Complex. Organic Letters, 2010, 12, 4335-4337.	4.6	54
16	Multicomponent Synthesis of Chiral Bidentate Unsymmetrical Unsaturated ⟨i>N⟨/i>â€Heterocyclic Carbenes: Copperâ€Catalyzed Asymmetric CC Bond Formation. Chemistry - A European Journal, 2015, 21, 993-997.	3.3	54
17	Copper-catalyzed asymmetric conjugate addition of organometallic reagents to extended Michael acceptors. Beilstein Journal of Organic Chemistry, 2015, 11, 2418-2434.	2.2	52
18	A Fastâ€Initiating Ionically Tagged Ruthenium Complex: A Robust Supported Preâ€catalyst for Batchâ€Process and Continuousâ€Flow Olefin Metathesis. Chemistry - A European Journal, 2012, 18, 16369-16382.	3.3	47

#	Article	IF	CITATIONS
19	Synergic Effects Between N-Heterocyclic Carbene and Chelating Benzylidene–Ether Ligands Toward the Initiation Step of Hoveyda–Grubbs Type Ru Complexes. ACS Catalysis, 2013, 3, 259-264.	11.2	45
20	Readily Accessible Unsymmetrical Unsaturated 2,6-Diisopropylphenyl N-Heterocyclic Carbene Ligands. Applications in Enantioselective Catalysis. Journal of Organic Chemistry, 2017, 82, 1880-1887.	3.2	45
21	Chiral NHC Ligands for the Copperâ€Catalyzed Asymmetric Conjugate Addition of Grignard Reagents. European Journal of Organic Chemistry, 2012, 2012, 5301-5306.	2.4	44
22	Enantioselective 1,6â€Conjugate Addition of Dialkylzinc Reagents to Acyclic Dienones Catalyzed by Cuâ€DiPPAM Complexâ€"Extension to Asymmetric Sequential 1,6/1,4â€Conjugate Addition. Chemistry - A European Journal, 2013, 19, 13663-13667.	3.3	44
23	Asymmetric Conjugate Addition to α-Substituted Enones/Enolate Trapping. Organic Letters, 2014, 16, 118-121.	4.6	42
24	Directed <i>ortho</i> C–H borylation catalyzed using Cp*Rh(<scp>iii</scp>)–NHC complexes. Chemical Communications, 2018, 54, 8202-8205.	4.1	42
25	The debut of chiral cyclic (alkyl)(amino)carbenes (CAACs) in enantioselective catalysis. Chemical Science, 2019, 10, 7807-7811.	7.4	41
26	Significant Asymmetric Amplification in Enantioselective Cu/DiPPAM-catalyzed 1,6- and 1,4-Conjugate Additions of Diethylzinc to (Di)enones. Organic Letters, 2012, 14, 3576-3579.	4.6	40
27	From Prochiral N-Heterocyclic Carbenes to Optically Pure Metal Complexes: New Opportunities in Asymmetric Catalysis. Journal of the American Chemical Society, 2020, 142, 93-98.	13.7	39
28	A tutorial review of stereoretentive olefin metathesis based on ruthenium dithiolate catalysts. Beilstein Journal of Organic Chemistry, 2018, 14, 2999-3010.	2.2	35
29	Optically Pure <i>C</i> ₁ -Symmetric Cyclic(alkyl)(amino)carbene Ruthenium Complexes for Asymmetric Olefin Metathesis. Journal of the American Chemical Society, 2020, 142, 19895-19901.	13.7	34
30	Electronic and chiroptical properties of chiral cycloiridiated complexes bearing helicenic NHC ligands. Chemical Communications, 2016, 52, 9243-9246.	4.1	30
31	Copperâ€Catalyzed Asymmetric Conjugate Addition of Dimethylzinc to Acylâ€ <i>N</i> à€methylimidazole Michael Acceptors: Scope, Limitations and Iterative Reactions. Advanced Synthesis and Catalysis, 2016, 358, 2519-2540.	4.3	29
32	Cationic Bisâ€Nâ€Heterocyclic Carbene (NHC) Ruthenium Complex: Structure and Application as Latent Catalyst in Olefin Metathesis. Chemistry - A European Journal, 2014, 20, 13716-13721.	3.3	27
33	Cycloalkyl-based unsymmetrical unsaturated (U ₂)-NHC ligands: flexibility and dissymmetry in ruthenium-catalysed olefin metathesis. Dalton Transactions, 2014, 43, 7044-7049.	3.3	27
34	Continuous Flow <i>Z</i> â€Stereoselective Olefin Metathesis: Development and Applications in the Synthesis of Pheromones and Macrocyclic Odorant Molecules**. Angewandte Chemie - International Edition, 2021, 60, 19685-19690.	13.8	24
35	Access to Fluorinated Lactams through Ring-Closing Metathesis of Reluctant Fluoroalkenes Promoted by Appropriate Substitution of a Double Bond. ACS Catalysis, 2014, 4, 2374-2378.	11.2	18
36	From Environmentally Friendly Reusable Ionic-Tagged Ruthenium-Based Complexes to Industrially Relevant Homogeneous Catalysts: Toward a Sustainable Olefin Metathesis. Synlett, 2017, 28, 773-798.	1,8	17

#	Article	IF	Citations
37	Stereoretentive Olefin Metathesis Made Easy: In Situ Generation of Highly Selective Ruthenium Catalysts from Commercial Starting Materials. Organic Letters, 2018, 20, 6822-6826.	4.6	16
38	A kinetic resolution strategy for the synthesis of chiral octahedral NHC–iridium(<scp>iii</scp>) catalysts. Chemical Communications, 2019, 55, 6058-6061.	4.1	16
39	Copper-catalyzed enantioselective conjugate addition of organometallic reagents to challenging Michael acceptors. Beilstein Journal of Organic Chemistry, 2020, 16, 212-232.	2.2	16
40	Acylâ€Imidazoles: A Privileged Ester Surrogate for Enantioselective Synthesis. ChemCatChem, 2019, 11, 5705-5722.	3.7	15
41	Copper-Catalyzed Asymmetric Conjugate Additions of Bis(pinacolato)diboron and Dimethylzinc to Acyl- <i>N</i> -methylimidazole Michael Acceptors: A Highly Stereoselective Unified Strategy for 1,3,5, <i>n</i>) (OH, Me) Motif Synthesis. Organic Letters, 2019, 21, 1872-1876.	4.6	15
42	Visible Light Induced Rhodium(I) atalyzed Câ~'H Borylation. Angewandte Chemie, 2019, 131, 15388-15392.	2.0	14
43	Asymmetric Sequential Cuâ€Catalyzed 1,6/1,4â€Conjugate Additions of Hard Nucleophiles to Cyclic Dienones: Determination of Absolute Configurations and Origins of Enantioselectivity. Chemistry - A European Journal, 2017, 23, 7515-7525.	3.3	13
44	Highly selective macrocyclic ring-closing metathesis of terminal olefins in non-chlorinated solvents at low dilution. Catalysis Science and Technology, 2019, 9, 436-443.	4.1	13
45	Synthesis Optimization and Catalytic Activity Screening of Industrially Relevant Ruthenium-Based Metathesis Catalysts. Topics in Catalysis, 2014, 57, 1351-1358.	2.8	11
46	Bleaching Earths as Powerful Additives for Ruâ€Catalyzed Selfâ€Metathesis of Nonâ€Refined Methyl Oleate at Pilot Scale. Chemistry - A European Journal, 2017, 23, 12729-12734.	3.3	11
47	Direct Immobilization of Ruâ€Based Catalysts on Silica: Hydrogen Bonds as Non ovalent Interactions for Recycling in Metathesis Reactions. ChemCatChem, 2015, 7, 2493-2500.	3.7	10
48	Activation of olefin metathesis complexes containing unsymmetrical unsaturated N-heterocyclic carbenes by copper and gold transmetalation. Chemical Communications, 2019, 55, 11583-11586.	4.1	10
49	In Situ Generation of Ru-Based Metathesis Catalyst. A Systematic Study. ACS Catalysis, 2019, 9, 3511-3518.	11.2	10
50	Catalytic Alkyne and Diyne Metathesis with Mixed Fluoroalkoxy-Siloxy Molybdenum Alkylidyne Complexes. Organometallics, 2021, 40, 2008-2015.	2.3	10
51	DNAâ€Based Asymmetric Inverse Electronâ€Demand Heteroâ€Diels–Alder. Chemistry - A European Journal, 2020, 26, 3519-3523.	3.3	10
52	Iron-Catalyzed Enantioselective Intramolecular Inverse Electron-Demand Hetero Diels–Alder Reactions: An Access to Bicyclic Dihydropyran Derivatives. Organic Letters, 2019, 21, 10007-10012.	4.6	8
53	Expedient synthesis of conjugated triynes via alkyne metathesis. Chemical Science, 2020, 11, 4934-4938.	7.4	8
54	Metal-Catalyzed Metathesis of Fluorinated Alkenes: Still a Current Major Challenge. ACS Catalysis, 2021, 11, 12307-12323.	11.2	7

#	Article	IF	CITATIONS
55	Synthesis and Application of Stereoretentive Ruthenium Catalysts on the Basis of the M7 and the Ru–Benzylidene–Oxazinone Design. Organometallics, 2018, 37, 829-834.	2.3	6
56	Catalytically Active Species in Copper/DiPPAMâ€Catalyzed 1,6â€Asymmetric Conjugate Addition of Dialkylzinc to Dienones: A Computational Overview. ChemCatChem, 2019, 11, 4108-4115.	3.7	6
57	Continuous Flow Z $\hat{a} \in S$ tereoselective Olefin Metathesis: Development and Applications in the Synthesis of Pheromones and Macrocyclic Odorant Molecules**. Angewandte Chemie, 2021, 133, 19837-19842.	2.0	5
58	Chiral oxazolidines acting as transient hydroxyalkyl-functionalized N-heterocyclic carbenes: an efficient route to air stable copper and gold complexes for asymmetric catalysis. Chemical Science, 0, , .	7.4	4
59	Titanium complexes with unsymmetrically substituted imidazolin-2-iminato ligands. Dalton Transactions, 2022, 51, 11448-11456.	3.3	3