
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5784509/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Solution-based low-temperature CsPbI ₃ nanoparticle perovskite solar cells. Materials Advances, 2022, 3, 1737-1746.	2.6	3
2	Sizeâ€Tunable Ni–Cu Core–Shell Nanoparticles—Structure, Composition, and Catalytic Activity for the Reverse Water–Gas Shift Reaction. Advanced Engineering Materials, 2022, 24, .	1.6	4
3	Role of the Alkali Metal Cation in the Early Stages of Crystallization of Halide Perovskites. Chemistry of Materials, 2022, 34, 1121-1131.	3.2	13
4	Small-angle scattering to reveal the colloidal nature of halide perovskite precursor solutions. Journal of Materials Chemistry A, 2021, 9, 13477-13482.	5.2	15
5	Structural and free volume characterization of sol–gel organic–inorganic hybrids, obtained by coâ€condensation of two ureasilicate stoichiometric precursors. Journal of Applied Polymer Science, 2021, 138, 50615.	1.3	5
6	Direct Observation of the Xenon Physisorption Process in Mesopores by Combining <i>In Situ</i> Anomalous Small-Angle X-ray Scattering and X-ray Absorption Spectroscopy. Journal of Physical Chemistry Letters, 2021, 12, 4018-4023.	2.1	4
7	Fluoridchemie in Zinnâ€Halogenidâ€Perowskiten. Angewandte Chemie, 2021, 133, 21753-21762.	1.6	5
8	Fluoride Chemistry in Tin Halide Perovskites. Angewandte Chemie - International Edition, 2021, 60, 21583-21591.	7.2	68
9	Innenrücktitelbild: Fluoridchemie in Zinnâ€Halogenidâ€Perowskiten (Angew. Chem. 39/2021). Angewandte Chemie, 2021, 133, 21763-21763.	1.6	0
10	Characterization of LiBH ₄ –MgH ₂ Reactive Hydride Composite System with Scattering and Imaging Methods Using Neutron and Synchrotron Radiation. Advanced Engineering Materials, 2021, 23, 2100294.	1.6	8
11	Quantification of Nanoscale Density Fluctuations in Hydrogenated Amorphous Silicon. Physical Review Letters, 2020, 125, 185501.	2.9	13
12	Crystallization of BaF ₂ from droplets of phase separated glass – evidence of a core–shell structure by ASAXS. CrystEngComm, 2020, 22, 5031-5039.	1.3	7
13	Dye activation of heterogeneous Copper(II)-Species for visible light driven hydrogen generation. International Journal of Hydrogen Energy, 2019, 44, 28409-28420.	3.8	4
14	Identifying the location of Cu ions in nanostructured SAPO-5 molecular sieves and its impact on the redox properties. RSC Advances, 2019, 9, 6429-6437.	1.7	2
15	Facile deposition of Pt nanoparticles on Sb-doped SnO ₂ support with outstanding active surface area for the oxygen reduction reaction. Catalysis Science and Technology, 2018, 8, 2672-2685.	2.1	25
16	Design of a Nanometric AlTi Additive for MgB ₂ -Based Reactive Hydride Composites with Superior Kinetic Properties. Journal of Physical Chemistry C, 2018, 122, 7642-7655.	1.5	29
17	Influence of the electrode nano/microstructure on the electrochemical properties of graphite in aluminum batteries. Journal of Materials Chemistry A, 2018, 6, 22673-22680.	5.2	23
18	In Situ Formation of TiB ₂ Nanoparticles for Enhanced Dehydrogenation/Hydrogenation Reaction Kinetics of LiBH ₄ –MgH ₂ as a Reversible Solid-State Hydrogen Storage Composite System. Journal of Physical Chemistry C, 2018, 122, 11671-11681.	1.5	29

#	Article	IF	CITATIONS
19	Cationic polyacrylamide induced nanoparticles assembly in a cellulose nanofiber network. Journal of Colloid and Interface Science, 2018, 529, 180-186.	5.0	14
20	Stabilization of Pt Nanoparticles Due to Electrochemical Transistor Switching of Oxide Support Conductivity. Chemistry of Materials, 2017, 29, 2831-2843.	3.2	29
21	Bringing Catalysis with Gold Nanoparticles in Green Solvents to Graduate Level Students. Journal of Chemical Education, 2017, 94, 510-514.	1.1	7
22	Investigation of gold and bimetallic gold/silver nanoparticles in soda-lime-silicate glasses formed by means of excimer laser irradiation. Proceedings of SPIE, 2017, , .	0.8	0
23	Insights into the reversibility of aluminum graphite batteries. Journal of Materials Chemistry A, 2017, 5, 9682-9690.	5.2	112
24	A novel catalytic route for hydrogenation–dehydrogenation of 2LiH + MgB ₂ via in situ formed core–shell Li _x TiO ₂ nanoparticles. Journal of Materials Chemistry A, 2017, 5, 12922-12933.	5.2	27
25	Thermoplastic polyurethanes with varying hard-segment components. Mechanical performance and a filler-crosslink conversion of hard domains as monitored by SAXS. European Polymer Journal, 2017, 94, 340-353.	2.6	26
26	Crystallization and Growth Mechanisms of Nanostructures in Silicate Glass. , 2016, , 89-114.		4
27	Cyclic stability and structure of nanoconfined Ti-doped NaAlH 4. International Journal of Hydrogen Energy, 2016, 41, 4159-4167.	3.8	16
28	Nanostructure of thermally aged thermoplastic polyurethane and its evolution under strain. European Polymer Journal, 2016, 81, 569-581.	2.6	17
29	Morphological Failure Mechanisms in Tensile Tests of Crosslinked Polyurethanes With Poorly Developed Domain Structure. Macromolecular Materials and Engineering, 2015, 300, 699-711.	1.7	13
30	Gold Nanoparticles in Novel Green Deep Eutectic Solvents: Self-Limited Growth, Self-Assembly & Catalytic Implications. Zeitschrift Fur Physikalische Chemie, 2015, 229, 221-234.	1.4	18
31	Pt(Ni) electrocatalysts for methanol oxidation prepared by galvanic replacement on TiO2 and TiO2–C powder supports. Journal of Electroanalytical Chemistry, 2015, 754, 65-74.	1.9	24
32	Machine prepared thermoplastic polyurethanes of varying hard segment content: Morphology and its evolution in tensile tests. Journal of Polymer Science, Part B: Polymer Physics, 2015, 53, 1213-1223.	2.4	8
33	Structural analysis of Fe–Mn–O nanoparticles in glass ceramics by small angle scattering. Journal of Solid State Chemistry, 2015, 222, 103-110.	1.4	12
34	Traceable GISAXS measurements for pitch determination of a 25â€nm self-assembled polymer grating. Journal of Applied Crystallography, 2014, 47, 1912-1920.	1.9	11
35	ASAXS study of CaF2nanoparticles embedded in a silicate glass matrix. Journal of Applied Crystallography, 2014, 47, 60-66.	1.9	35
36	Crystal Phase Transitions in the Shell of PbS/CdS Core/Shell Nanocrystals Influences Photoluminescence Intensity. Chemistry of Materials, 2014, 26, 5914-5922.	3.2	44

#	Article	IF	CITATIONS
37	Self-assembly of gold nanoparticles on deep eutectic solvent (DES) surfaces. Chemical Communications, 2014, 50, 8693-8696.	2.2	38
38	Magnetic nanocrystals embedded in silicate glasses studied by polarized SANS. Journal of Non-Crystalline Solids, 2014, 385, 24-29.	1.5	14
39	Crystallization of ZrTiO ₄ Nanocrystals in Lithium-Alumino-Silicate Glass Ceramics: Anomalous Small-Angle X-ray Scattering Investigation. Crystal Growth and Design, 2014, 14, 2838-2845.	1.4	29
40	Deep Eutectic Solvents for the Self-Assembly of Gold Nanoparticles: A SAXS, UV–Vis, and TEM Investigation. Langmuir, 2014, 30, 6038-6046.	1.6	77
41	Structural analysis of calcium reactive hydride composite for solid state hydrogen storage. Journal of Applied Crystallography, 2014, 47, 67-75.	1.9	20
42	Mechanical Stability and Fibrinolytic Resistance of Clots Containing Fibrin, DNA, and Histones. Journal of Biological Chemistry, 2013, 288, 6946-6956.	1.6	216
43	Nonaqueous Microemulsions Based on <i>N</i> , <i>N</i> ′-Alkylimidazolium Alkylsulfate Ionic Liquids. Langmuir, 2013, 29, 6833-6839.	1.6	46
44	<i>In Situ</i> Study of Atomic Structure Transformations of Pt–Ni Nanoparticle Catalysts during Electrochemical Potential Cycling. ACS Nano, 2013, 7, 5666-5674.	7.3	98
45	Experimental evidence of a diffusion barrier around BaF2 nanocrystals in a silicate glass system by ASAXS. CrystEngComm, 2012, 14, 5215.	1.3	44
46	Distribution of Counterions around Lignosulfonate Macromolecules in Different Polar Solvent Mixtures. Langmuir, 2012, 28, 2465-2475.	1.6	30
47	Density minimum of confined water at low temperatures: a combined study by small-angle scattering of X-rays and neutrons. Physical Chemistry Chemical Physics, 2012, 14, 3852.	1.3	76
48	Structural analysis of magnetic nanocrystals embedded in silicate glasses by anomalous small-angle X-ray scattering. Journal of Applied Crystallography, 2012, 45, 644-651.	1.9	11
49	Supramolecular Structures of Enzyme Clusters. Journal of Physical Chemistry Letters, 2011, 2, 1395-1399.	2.1	14
50	Crystallization of (Fe, Mn)-based nanoparticles in sodium-silicate glasses. Journal of Materials Science, 2011, 46, 7169-7176.	1.7	24
51	Investigation of Energyâ€Relevant Materials with Synchrotron Xâ€Rays and Neutrons. Advanced Engineering Materials, 2011, 13, 712-729.	1.6	63
52	Small-angle X-ray scattering experiments and computer simulations to characterise anisotropy of activated carbons prepared from wood. Carbon, 2011, 49, 3958-3971.	5.4	8
53	X-Ray-Assisted Formation of Gold Nanoparticles in Soda Lime Silicate Glass: Suppressed Ostwald Ripening. Physical Review Letters, 2011, 106, 085702.	2.9	26
54	Synthesis and Phase Composition of Fe/Mn Containing Nanocrystals in Glasses from the System Na2O/MnO/SiO2/Fe2O3. NATO Science for Peace and Security Series B: Physics and Biophysics, 2011, , 249-254.	0.2	0

ARMIN HOELL

#	Article	IF	CITATIONS
55	Traceable size determination of PMMA nanoparticles based on Small Angle X-ray Scattering (SAXS). Journal of Physics: Conference Series, 2010, 247, 012027.	0.3	28
56	Direct Accessing the Nanostructure of Carbon Supported Ruâ^'Se Based Catalysts by ASAXS. Journal of Physical Chemistry C, 2010, 114, 22375-22384.	1.5	17
57	Silver Ion Incorporation and Nanoparticle Formation inside the Cavity of <i>Pyrococcus furiosus</i> Ferritin: Structural and Size-Distribution Analyses. Journal of the American Chemical Society, 2010, 132, 3621-3627.	6.6	105
58	Analysis of nanostructure and nanochemistry by ASAXS: Accessing phase composition of oxyfluoride glass ceramics doped with <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:msup><mml:mrow><mml:mtext>Er</mml:mtext></mml:mrow><mml:mro Physical Review B, 2010, 81, .</mml:mro </mml:msup></mml:mrow></mml:math>	w><111 mml:n	n>4₹/mml:m
59	A Closer Look at the Structure of Sterically Stabilized Liposomes: A Small-Angle X-ray Scattering Study. Journal of Physical Chemistry B, 2010, 114, 6850-6854.	1.2	27
60	Yttria-zirconia coatings studied by grazing-incidence small-angle X-ray scattering during in situ heating. Physical Chemistry Chemical Physics, 2010, 12, 14492.	1.3	11
61	ASAXS study on the formation of core–shell Ag/Au nanoparticles in glass. Nanotechnology, 2009, 20, 505705.	1.3	25
62	On the determination of partial structure functions in small-angle scattering exemplified by Al ₈₉ Ni ₆ La ₅ alloy. Journal of Applied Crystallography, 2009, 42, 323-325.	1.9	20
63	Small angle x-ray and neutron scattering study of disordered and three dimensional–ordered magnetic protein arrays. Journal of Applied Physics, 2009, 105, .	1.1	24
64	Structural Investigation of Carbon Supported Ru-Se Based Catalysts using Anomalous Small Angle X-Ray Scattering. ECS Transactions, 2008, 6, 127-138.	0.3	12
65	Orientation of the DMPC unilamellar vesicle system in the magnetic field: SANS study. Chemical Physics, 2008, 345, 181-184.	0.9	3
66	Photoluminescence of atomic gold and silver particles in soda-lime silicate glasses. Nanotechnology, 2008, 19, 135701.	1.3	122
67	On the Structure of Carbonâ€5upported Seleniumâ€Modified Ruthenium Nanoparticles as Electrocatalysts for Oxygen Reduction in Fuel Cells. Angewandte Chemie - International Edition, 2007, 46, 7311-7314.	7.2	65
68	Small-angle scattering of orientated magnetic structures and applications to magnetic colloids. Physica B: Condensed Matter, 2006, 385-386, 461-464.	1.3	2
69	Change of magnetoresistivity and magnetic structure of by iron substitution. Journal of Magnetism and Magnetic Materials, 2005, 290-291, 1093-1096.	1.0	3
70	Size distribution and composition of magnetic precipitates in amorphous Ni–P alloy. Physica B: Condensed Matter, 2005, 369, 8-19.	1.3	19
71	Influence of trehalose on the structure of unilamellar DMPC vesicles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 256, 1-7.	2.3	22
72	Pseudo-crystalline ordering in ferrofluids induced by magnetic fields. Journal of Magnetism and Magnetic Materials, 2004, 272-276, 1487-1489.	1.0	4

#	Article	IF	CITATIONS
73	Determination of particle size distributions by small-angle scattering with polarized neutrons using maximum-entropy method. Journal of Applied Crystallography, 2004, 37, 40-47.	1.9	6
74	Small-angle neutron and X-ray scattering of dispersions of oleic-acid-coated magnetic iron particles. Journal of Applied Crystallography, 2004, 37, 847-856.	1.9	40
75	Nanostructure and field-induced arrangement of magnetosomes studied by SANSPOL. Physica B: Condensed Matter, 2004, 350, E309-E313.	1.3	38
76	SANS measurements with polarised neutrons on FeAg magnetic granular samples: compositional and magnetic morphology. Journal of Magnetism and Magnetic Materials, 2003, 262, 124-127.	1.0	3
77	Fe–Ag magnetic granular systems: a SANS study with polarised neutrons. Physica B: Condensed Matter, 2003, 335, 119-122.	1.3	0
78	Small-angle neutron scattering measurements with polarised neutrons on Fe–Ag magnetic granular systems. Journal of Applied Crystallography, 2003, 36, 826-828.	1.9	5
79	Solvent dependent arrangement of shell molecules in ferrofluids studied by small-angle scattering with polarized neutrons. Journal of Applied Crystallography, 2003, 36, 558-561.	1.9	11
80	Polarised neutron investigation of iron composite nanoparticles. Journal of Applied Crystallography, 2003, 36, 450-453.	1.9	5
81	Field-induced pseudocrystalline ordering in concentrated ferrofluids. Physical Review E, 2003, 68, 031203.	0.8	62
82	Microstructural SANS - studies of hydrating tricalcium silicate (C 3 S). Applied Physics A: Materials Science and Processing, 2002, 74, s1124-s1127.	1.1	6
83	DMPC vesicles and mixed DMPC/C 12 E 8 micelles orientation in strong magnetic fields. Applied Physics A: Materials Science and Processing, 2002, 74, s1239-s1241.	1.1	9
84	Neutron scattering from magnetically aligned biomimetic substrates. Applied Physics A: Materials Science and Processing, 2002, 74, s1260-s1261.	1.1	5
85	Core-shell and magnetic structure of barium hexaferrite fluids studied by SANS. Journal of Magnetism and Magnetic Materials, 2002, 252, 92-94.	1.0	17
86	Nuclear and magnetic nanostructure of magnetite ferrofluids studied by SANSPOL. Journal of Magnetism and Magnetic Materials, 2002, 252, 89-91.	1.0	17
87	Magnetic and structural investigations on barium hexaferrite ferrofluids. Journal of Magnetism and Magnetic Materials, 2002, 252, 43-45.	1.0	28
88	Small-angle scattering investigations of cobalt-ferrofluids using polarised neutrons. Journal of Magnetism and Magnetic Materials, 2002, 252, 83-85.	1.0	24
89	Effect of the Clâ^' content on the formation and dissolution of precipitates in a soda–lime–silica glass. Journal of Non-Crystalline Solids, 2001, 293-295, 642-648.	1.5	0
90	Composition fluctuations in the demixed supercooled liquid state of Zr 41 Ti 14 Cu 12.5 Ni 10 Be 22.5 : a combined ASAXS and SANS study. Scripta Materialia, 2001, 44, 2335-2339.	2.6	23

ARMIN HOELL

#	ARTICLE	IF	CITATIONS
91	Structure of magnetite ferrofluids investigated by SANS with polarized neutrons. Scripta Materialia, 2001, 44, 2341-2345.	2.6	30
92	Reversion of precipitates in phase separated soda lime silica glass. Journal of Applied Crystallography, 2000, 33, 492-495.	1.9	1
93	The non-magnetic surface of magnetic particles in nanostructured glass ceramics studied by SANS. Physica B: Condensed Matter, 2000, 276-278, 886-887.	1.3	10
94	Formation of magnetic nanocrystals in a glass ceramic studied by small-angle scattering. Journal of Applied Physics, 1999, 85, 2279-2286.	1.1	38
95	Magnetic nanostructures in a glass ceramic charcterized by small angle neutron scattering. Scripta Materialia, 1999, 12, 601-604.	0.5	9
96	Crystallization of polymer derived silicon carbide materials. Journal of the European Ceramic Society, 1998, 18, 1885-1891.	2.8	25
97	Effect of fining with sodium chloride on the phase separation of a soda lime silica glass. Journal of Non-Crystalline Solids, 1996, 208, 294-302.	1.5	9
98	Structural investigation of ferrimagnetic particles formed by glass crystallization. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1996, 100, 1646-1650.	0.9	9
99	Small-angle scattering investigation of phase separation in glasses influenced by admixtures of TiO2, MoO3 and WO3. European Physical Journal Special Topics, 1993, 03, C8-329-C8-332.	0.2	1
100	Effect of the particle size evolution on the hydrogen storage performance of KH doped Mg(NH2)2 + 2LiH. Journal of Materials Science, 0, , .	1.7	1