Stéphane Quideau

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5784081/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Isolation of a new taste-active brandy tannin A: Structural elucidation, quantitation and sensory assessment. Food Chemistry, 2022, 377, 131963.	8.2	8
2	Identification, quantitation and sensory contribution of new C-glucosidic ellagitannin-derived spirit compounds. Food Chemistry, 2022, 384, 132307.	8.2	4
3	Realâ€Time Analysis of Polyphenol–Protein Interactions by Surface Plasmon Resonance Using Surfaceâ€Bound Polyphenols. Chemistry - A European Journal, 2021, 27, 5498-5508.	3.3	6
4	Antiviral Properties of the NSAID Drug Naproxen Targeting the Nucleoprotein of SARS-CoV-2 Coronavirus. Molecules, 2021, 26, 2593.	3.8	29
5	Bispericyclic Diels–Alder Dimerization of <i>ortho</i> â€Quinols in Natural Product (Bio)Synthesis: Bioinspired Chemical 6‣tep Synthesis of (+)â€Maytenone. Angewandte Chemie, 2021, 133, 15094-15101.	2.0	4
6	Innenrücktitelbild: Bispericyclic Diels–Alder Dimerization of <i>ortho</i> â€Quinols in Natural Product (Bio)Synthesis: Bioinspired Chemical 6â€Step Synthesis of (+)â€Maytenone (Angew. Chem. 27/2021). Angewandte Chemie, 2021, 133, 15239-15239.	2.0	0
7	Bispericyclic Diels–Alder Dimerization of <i>ortho</i> â€Quinols in Natural Product (Bio)Synthesis: Bioinspired Chemical 6‣tep Synthesis of (+)â€Maytenone. Angewandte Chemie - International Edition, 2021, 60, 14967-14974.	13.8	22
8	Impact of polyphenols on receptor–ligand interactions by NMR: the case of neurotensin (NT)–neurotensin receptor fragment (NTS1) complex. Journal of Biomolecular Structure and Dynamics, 2020, 38, 1467-1478.	3.5	1
9	C-glucosidic ellagitannins and galloylated glucoses as potential functional food ingredients with anti-diabetic properties: a study of α-glucosidase and α-amylase inhibition. Food Chemistry, 2020, 313, 126099.	8.2	89
10	Synthesis and leishmanicidal evaluation of sulfanyl―and sulfonylâ€ŧethered functionalized benzoate derivatives featuring a nitroimidazole moiety. Archiv Der Pharmazie, 2020, 353, e2000002.	4.1	6
11	Synthesis and Biological Evaluation of Haptenâ€Clicked Analogues of The Antigenic Peptide Melanâ€A/MARTâ€I 26(27L)â€35. ChemMedChem, 2020, 15, 799-807.	3.2	4
12	Maternal alcoholism and neonatal hypoxia-ischemia: Neuroprotection by stilbenoid polyphenols. Brain Research, 2020, 1738, 146798.	2.2	15
13	Interaction between Ellagitannins and Salivary Proline-Rich Proteins. Journal of Agricultural and Food Chemistry, 2019, 67, 9579-9590.	5.2	24
14	Bioâ€inspired Total Synthesis of Twelve <i>Securinega</i> Alkaloids: Structural Reassignments of (+)â€Virosineâ€B and (â^')â€Episecurinolâ€A. Chemistry - A European Journal, 2019, 25, 11574-11580.	3.3	15
15	Hemisynthesis and Bactericidal Activity of Several Substituted Benzoic Acid Esters of 13(S)-Labdan-8α,15-Diol, a Diterpene from Oxylobus glanduliferus. Chemistry of Natural Compounds, 2019, 55, 677-684.	0.8	2
16	Blue LED Irradiation of Iodonium Ylides Gives Diradical Intermediates for Efficient Metalâ€free Cyclopropanation with Alkenes. Angewandte Chemie, 2019, 131, 17115-17121.	2.0	10
17	Blue LED Irradiation of Iodonium Ylides Gives Diradical Intermediates for Efficient Metalâ€free Cyclopropanation with Alkenes. Angewandte Chemie - International Edition, 2019, 58, 16959-16965.	13.8	28
18	Innentitelbild: Blue LED Irradiation of Iodonium Ylides Gives Diradical Intermediates for Efficient Metalâ€free Cyclopropanation with Alkenes (Angew. Chem. 47/2019). Angewandte Chemie, 2019, 131, 16854-16854.	2.0	0

#	Article	IF	CITATIONS
19	Anti-Herpes Simplex Virus Type 1 Activity of Specially Selected Groups of Tannins. Drug Research, 2019, 69, 374-373.	1.7	13
20	Synthesis of [7]Helicene Enantiomers and Exploratory Study of Their Conversion into Helically Chiral Iodoarenes and Iodanes. Chemistry - A European Journal, 2019, 25, 2852-2858.	3.3	28
21	Preparation and bactericidal activity of oxidation derivatives of austroeupatol, an ent-nor-furano diterpenoid of the labdane series from Austroeupatorium inulifolium. Phytochemistry Letters, 2019, 29, 47-52.	1.2	3
22	Reactivity of wine polyphenols under oxidation conditions: Hemisynthesis of adducts between grape catechins or oak ellagitannins and odoriferous thiols. Tetrahedron, 2019, 75, 551-560.	1.9	10
23	Anti-osteoclastic effects of C-glucosidic ellagitannins mediated by actin perturbation. European Journal of Cell Biology, 2018, 97, 533-545.	3.6	5
24	From Naproxen Repurposing to Naproxen Analogues and Their Antiviral Activity against Influenza A Virus. Journal of Medicinal Chemistry, 2018, 61, 7202-7217.	6.4	32
25	<i>ortho</i> -Quinol Acetate Chemistry: Reactivity toward Aryl-Based Nucleophiles and Applications to the Synthesis of Natural Products. Journal of Organic Chemistry, 2017, 82, 3990-3995.	3.2	9
26	Asymmetric dearomative spirolactonization of naphthols using λ3-iodanes under chiral phase-transfer catalysis. Tetrahedron, 2017, 73, 3684-3690.	1.9	20
27	Oleanane-type glycosides from Pittosporum tenuifolium "variegatum―and P.Âtenuifolium "gold star― Phytochemistry, 2017, 140, 166-173.	2.9	13
28	Triterpene saponins from Billia rosea. Phytochemistry, 2017, 141, 105-113.	2.9	3
29	Synthesis of Scyphostatin Analogues through Hypervalent Iodine-Mediated Phenol Dearomatization. Journal of Organic Chemistry, 2017, 82, 11816-11828.	3.2	30
30	Bioinspired Total Synthesis of (â^')â€Vescalin: A Nonahydroxytriphenoylated <i>C</i> â€Glucosidic Ellagitannin. Angewandte Chemie - International Edition, 2017, 56, 13833-13837.	13.8	25
31	Asymmetric Alkynylation of βâ€Ketoesters and Naphthols Promoted by New Chiral Biphenylic Iodanes. Chemistry - A European Journal, 2017, 23, 13309-13313.	3.3	23
32	Bioinspired Total Synthesis of (â^')â€Vescalin: A Nonahydroxytriphenoylated <i>C</i> â€Glucosidic Ellagitannin. Angewandte Chemie, 2017, 129, 14021-14025.	2.0	2
33	Immobilization of flavan-3-ols onto sensor chips to study their interactions with proteins and pectins by SPR. Applied Surface Science, 2016, 371, 512-518.	6.1	13
34	Biological activity of ellagitannins: Effects as anti-oxidants, pro-oxidants and metal chelators. Phytochemistry, 2016, 125, 65-72.	2.9	46
35	Total Synthesis of (â^')-Bacchopetiolone via an Asymmetric Hydroxylative Phenol Dearomatization/[4+2]-Dimerization Cascade Promoted by a Novel Salen-Type Chiral Iodane. Organic Letters, 2016, 18, 1120-1123.	4.6	45
36	Phenol Dearomatization with Hypervalent lodine Reagents. Topics in Current Chemistry, 2016, 373, 25-74.	4.0	49

#	Article	IF	CITATIONS
37	Gallotannins and Tannic Acid: First Chemical Syntheses and In Vitro Inhibitory Activity on Alzheimer's Amyloid βâ€Peptide Aggregation. Angewandte Chemie - International Edition, 2015, 54, 8217-8221.	13.8	48
38	Gallotannins and Tannic Acid: First Chemical Syntheses and In Vitro Inhibitory Activity on Alzheimer's Amyloid βâ€₽eptide Aggregation. Angewandte Chemie, 2015, 127, 8335-8339.	2.0	6
39	About the impact of oak ellagitannins on wine odoriferous thiols under acidic and oxidation conditions. Tetrahedron, 2015, 71, 2991-2998.	1.9	6
40	Polyphenolic C-glucosidic ellagitannins present in oak-aged wine inhibit HIV-1 nucleocapsid protein. Tetrahedron, 2015, 71, 3020-3026.	1.9	11
41	Structure-based design of novel naproxen derivatives targeting monomeric nucleoprotein of Influenza A virus. Journal of Biomolecular Structure and Dynamics, 2015, 33, 1899-1912.	3.5	27
42	Facile and sustainable synthesis of the natural antioxidant hydroxytyrosol. Tetrahedron Letters, 2014, 55, 2455-2458.	1.4	21
43	Acylated oleanane-type saponins from Ganophyllum giganteum. Phytochemistry, 2014, 98, 236-242.	2.9	8
44	Asymmetric Hydroxylative Phenol Dearomatization Promoted by Chiral Binaphthylic and Biphenylic Iodanes. Angewandte Chemie - International Edition, 2014, 53, 9860-9864.	13.8	123
45	New affinity-based probes for capturing flavonoid-binding proteins. Chemical Communications, 2014, 50, 9387-9389.	4.1	9
46	Protectingâ€Groupâ€Free Solidâ€Phase Anchoring of Polyphenolic <i>C</i> â€Glucosidic Ellagitannins and Synthesis of 1â€Alkylaminoâ€Vescalagin Derivatives. European Journal of Organic Chemistry, 2014, 2014, 4963-4972.	2.4	5
47	Thermodynamic and Kinetic Properties of a New Myrtillin–Vescalagin Hybrid Pigment. Journal of Agricultural and Food Chemistry, 2013, 61, 11569-11578.	5.2	9
48	Steroidal saponins from the fruits of Solanum torvum. Phytochemistry, 2013, 86, 137-143.	2.9	10
49	Hemisynthesis and Structural and Chromatic Characterization of Delphinidin 3- <i>O</i> -Glucoside–Vescalagin Hybrid Pigments. Journal of Agricultural and Food Chemistry, 2013, 61, 11560-11568.	5.2	14
50	The Polyphenolic Ellagitannin Vescalagin Acts As a Preferential Catalytic Inhibitor of the α Isoform of Human DNA Topoisomerase II. Molecular Pharmacology, 2012, 82, 134-141.	2.3	31
51	Synthesis of Biologically Active Catecholic Compounds via ortho-Selective Oxygenation of Phenolic Compounds Using Hypervalent Iodine(V) Reagents. Current Organic Synthesis, 2012, 9, 650-669.	1.3	27
52	Identification of Adducts between an Odoriferous Volatile Thiol and Oxidized Grape Phenolic Compounds: Kinetic Study of Adduct Formation under Chemical and Enzymatic Oxidation Conditions. Journal of Agricultural and Food Chemistry, 2012, 60, 2647-2656.	5.2	52
53	Resveratrol Still Has Something To Say about Aging!. Angewandte Chemie - International Edition, 2012, 51, 6824-6826.	13.8	40
54	Synthetic Studies toward <i>C</i> â€Glucosidic Ellagitannins: A Biomimetic Total Synthesis of 5â€ <i>O</i> â€Desgalloylepipunicacorteinâ€A. Chemistry - A European Journal, 2012, 18, 9063-9074.	3.3	22

#	Article	IF	CITATIONS
55	Triumph for unnatural synthesis. Nature, 2011, 474, 459-460.	27.8	9
56	First and biomimetic total synthesis of a member of the C-glucosidic subclass of ellagitannins, 5-O-desgalloylepipunicacortein A. Chemical Communications, 2011, 47, 1628-1630.	4.1	22
57	Synthesis of ellagitannin natural products. Natural Product Reports, 2011, 28, 853.	10.3	74
58	Identification, amounts, and kinetics of extraction of C-glucosidic ellagitannins during wine aging in oak barrels or in stainless steel tanks with oak chips. Analytical and Bioanalytical Chemistry, 2011, 401, 1531-1539.	3.7	62
59	New Triterpenoid and Ergostane Glycosides from the Leaves of <i>Hydrocotyle umbellata</i> L Helvetica Chimica Acta, 2011, 94, 1850-1859.	1.6	10
60	Plant Polyphenols: Chemical Properties, Biological Activities, and Synthesis. Angewandte Chemie - International Edition, 2011, 50, 586-621.	13.8	2,014
61	Binding of Filamentous Actin and Winding into Fibrillar Aggregates by the Polyphenolic Câ€Glucosidic Ellagitannin Vescalagin. Angewandte Chemie - International Edition, 2011, 50, 5099-5104.	13.8	23
62	Development of an Affinityâ€Based Proteomic Strategy for the Elucidation of Proanthocyanidin Biosynthesis. ChemBioChem, 2011, 12, 1193-1197.	2.6	8
63	Steroidal saponins from the fruits of Cestrum ruizteranianum. Natural Product Communications, 2011, 6, 1825-6.	0.5	3
64	Physicochemical Studies of New Anthocyanoâ€Ellagitannin Hybrid Pigments: About the Origin of the Influence of Oak <i>C</i> â€Glycosidic Ellagitannins on Wine Color. European Journal of Organic Chemistry, 2010, 2010, 55-63.	2.4	71
65	Hypervalent iodine-mediated phenol dearomatization in natural product synthesis. Tetrahedron, 2010, 66, 2235-2261.	1.9	571
66	Hypervalent iodine-mediated oxygenative phenol dearomatization reactions. Tetrahedron, 2010, 66, 5908-5917.	1.9	120
67	Crystal Structures of HLA-A*0201 Complexed with Melan-A/MART-1 _{26(27L)-35} Peptidomimetics Reveal Conformational Heterogeneity and Highlight Degeneracy of T Cell Recognition. Journal of Medicinal Chemistry, 2010, 53, 7061-7066.	6.4	8
68	Design, synthesis and evaluation of β-lactam antigenic peptide hybrids; unusual opening of the β-lactam ring in acidic media. Organic and Biomolecular Chemistry, 2010, 8, 5345.	2.8	8
69	Evaluating the potential of chestnut (Castanea sativa Mill.) fruit pericarp and integument as a source of tocopherols, pigments and polyphenols. Industrial Crops and Products, 2010, 31, 301-311.	5.2	93
70	Triterpene saponins from the fruits of Phytolacca rugosa (Phytolaccaceae). Natural Product Communications, 2010, 5, 775-6.	0.5	3
71	Specific or Nonspecific Protein–Polyphenol Interactions? Discrimination in Real Time by Surface Plasmon Resonance. ChemBioChem, 2009, 10, 2321-2324.	2.6	25
72	Asymmetric Hydroxylative Phenol Dearomatization through In Situ Generation of Iodanes from Chiral Iodoarenes and <i>m</i>	13.8	257

#	Article	IF	CITATIONS
73	Stable solid-supported leucoanthocyanidin variants for flavanoid biosynthesis elucidation. Tetrahedron Letters, 2009, 50, 6567-6571.	1.4	10
74	C-Glycosidic Ellagitannins and Their Influence on Wine Chemistry. , 2009, , 320-365.		26
75	Highly Diastereoselective Synthesis of Orthoquinone Monoketals through λ ³ â€lodaneâ€Mediated Oxidative Dearomatization of Phenols. Angewandte Chemie - International Edition, 2008, 47, 3552-3555.	13.8	95
76	Total Synthesis of (+)â€Aquaticol by Biomimetic Phenol Dearomatization: Double Diastereofacial Differentiation in the Diels–Alder Dimerization of Orthoquinols with a <i>C</i> ₂ â€Symmetric Transition State. Angewandte Chemie - International Edition, 2008, 47, 628-628.	13.8	7
77	Total Synthesis of Wasabidienones B ₁ and B ₀ via SIBX-Mediated Hydroxylative Phenol Dearomatization. Organic Letters, 2008, 10, 5211-5214.	4.6	69
78	Oxidative Dearomatization of Phenols: Why, How and What For?. Synlett, 2008, 2008, 467-495.	1.8	424
79	Inhibition of Topoisomerase I Cleavage Activity by Thiol-reactive Compounds. Journal of Biological Chemistry, 2007, 282, 14403-14412.	3.4	22
80	Efficient Access to Orthoquinols and Their [4 + 2] Cyclodimers via SIBX-Mediated Hydroxylative Phenol Dearomatization. Journal of Organic Chemistry, 2007, 72, 6280-6283.	3.2	81
81	Synthetic Anticancer Vaccine Candidates:Â Rational Design of Antigenic Peptide Mimetics That Activate Tumor-Specific T-Cells. Journal of Medicinal Chemistry, 2007, 50, 1598-1609.	6.4	19
82	Total Synthesis of (+)-Aquaticol by Biomimetic Phenol Dearomatization: Double Diastereofacial Differentiation in the Diels–Alder Dimerization of Orthoquinols with aC2-Symmetric Transition State. Angewandte Chemie - International Edition, 2007, 46, 1533-1535.	13.8	105
83	Regio- and stereoselectivities in Diels–Alder cyclodimerizations of orthoquinonoid cyclohexa-2,4-dienones. Tetrahedron, 2007, 63, 6493-6505.	1.9	72
84	Extraction, Detection, and Quantification of Flavano-Ellagitannins and Ethylvescalagin in a Bordeaux Red Wine Aged in Oak Barrels. Journal of Agricultural and Food Chemistry, 2006, 54, 7349-7354.	5.2	79
85	Covalent modification of a melanoma-derived antigenic peptide with a natural quinone methide. Preliminary chemical, molecular modelling and immunological evaluation studies. Molecular BioSystems, 2006, 2, 240.	2.9	14
86	Safe oxidation of sulfides into sulfoxides using SIBX. Tetrahedron Letters, 2006, 47, 5869-5873.	1.4	56
87	λ3-lodane-mediated arenol dearomatization. Synthesis of five-membered ring-containing analogues of the aquayamycin ABC tricyclic unit and novel access to the apoptosis inducer menadione. Tetrahedron, 2005, 61, 1551-1562.	1.9	45
88	Regioselective Hypervalent-Iodine(III)-Mediated Dearomatizing Phenylation of Phenols through Direct Ligand Coupling. Angewandte Chemie - International Edition, 2005, 44, 7065-7069.	13.8	108
89	The Chemistry of Wine PolyphenolicC-Glycosidic Ellagitannins Targeting Human Topoisomerase II. Chemistry - A European Journal, 2005, 11, 6503-6513.	3.3	130
90	Oxidative Dearomatization of Phenols and Anilines via λ3- and λ5-Iodane-Mediated Phenylation and Oxygenation. Molecules, 2005, 10, 201-216.	3.8	49

#	Article	IF	CITATIONS
91	Evaluation of selected South African medicinal plants for inhibitory properties against human immunodeficiency virus type 1 reverse transcriptase and integrase. Journal of Ethnopharmacology, 2005, 99, 83-91.	4.1	101
92	Colorimetric Evaluation of Phenolic Content and GC-MS Characterization of Phenolic Composition of Alimentary and Cosmetic Argan Oil and Press Cake. Journal of Agricultural and Food Chemistry, 2005, 53, 9122-9127.	5.2	51
93	Main Structural and Stereochemical Aspects of the Antiherpetic Activity of Nonahydroxyterphenoyl-ContainingC-Glycosidic Ellagitannins. Chemistry and Biodiversity, 2004, 1, 247-258.	2.1	69
94	Plant "Polyphenolic―Small Molecules Can Induce a Calorie Restriction-Mimetic Life-Span Extension by Activating Sirtuins: Will "Polyphenols―Someday Be Used as Chemotherapeutic Drugs in Western Medicine?. ChemBioChem, 2004, 5, 427-430.	2.6	29
95	First Asymmetric Synthesis of Orthoquinone Monoketal Enantiomers via Anodic Oxidation. Organic Letters, 2004, 6, 4571-4573.	4.6	22
96	Electrochemical Synthesis of Dimerizing and Nondimerizing Orthoquinone Monoketals. Journal of Organic Chemistry, 2004, 69, 8731-8738.	3.2	40
97	DNA Topoisomerase Inhibitor Acutissimin A and Other Flavano-Ellagitannins in Red Wine. Angewandte Chemie - International Edition, 2003, 42, 6012-6014.	13.8	77
98	Cover Picture: DNA Topoisomerase Inhibitor Acutissimin A and Other Flavano-Ellagitannins in Red Wine (Angew. Chem. Int. Ed. 48/2003). Angewandte Chemie - International Edition, 2003, 42, 5909-5909.	13.8	0
99	A Stabilized Formulation of IBX (SIBX) for Safe Oxidation Reactions Including a New Oxidative Demethylation of Phenolic Methyl Aryl Ethers. Organic Letters, 2003, 5, 2903-2906.	4.6	172
100	ComplexC-Glycosyl Flavonoid Phytoalexins fromCucumissativus. Journal of Natural Products, 2003, 66, 1280-1283.	3.0	99
101	Enantiospecific Synthesis of the Antituberculosis Marine Sponge Metabolite (+)-Puupehenone. The Arenol Oxidative Activation Route. Organic Letters, 2002, 4, 3975-3978.	4.6	75
102	Extractives Content in Cooperage Oak Wood during Natural Seasoning and Toasting; Influence of Tree Species, Geographic Location, and Single-Tree Effects. Journal of Agricultural and Food Chemistry, 2002, 50, 5955-5961.	5.2	134
103	lodine(III)-Mediated Generation of Nitrogen-Tethered Orthoquinol Acetates for the Construction of Oxygenated Indole, Quinoline, and Phenanthridine Alkaloid Motifs. Journal of Organic Chemistry, 2002, 67, 3425-3436.	3.2	48
104	Electrochemically-Induced Spirolactonization of α-(Methoxyphenoxy)alkanoic Acids into Quinone Ketals. Journal of Organic Chemistry, 2002, 67, 4458-4465.	3.2	28
105	A Convenient Synthesis of the Echinacea-Derived Immunostimulator and HIV-1 Integrase Inhibitor (â^')-(2R,3R)-Chicoric Acid. Helvetica Chimica Acta, 2002, 85, 2328-2334.	1.6	21
106	Hypervalent iodine(III)-mediated oxidative acetoxylation of 2-methoxyphenols for regiocontrolled nitrogen benzannulation. Tetrahedron Letters, 2001, 42, 7393-7396.	1.4	23
107	2-Alkoxyarenol-derived orthoquinols in carbon–oxygen, carbon–nitrogen and carbon–carbon bond-forming reactions. Tetrahedron, 2001, 57, 319-329.	1.9	76
108	SYNTHETIC USES OF ORTHOQUINONE MONOKETALS AND THEIR ORTHOQUINOL VARIANTS. A REVIEW. Organic Preparations and Procedures International, 1999, 31, 617-680.	1.3	118

#	Article	IF	CITATIONS
109	Orthoquinone monoketal chemistry. Experimental and density functional theory studies on orthoquinol acetate rearrangements. Tetrahedron Letters, 1999, 40, 615-618.	1.4	49
110	Oxidized Arenol Intermediates in Intermolecular Carbonâ^'Carbon Bond Formation. Naphthoid Cyclohexa-2,4-dienones via Oxidative Nucleophilic Substitution. Organic Letters, 1999, 1, 1651-1654.	4.6	86
111	Novel Preparation of Orthoquinol Acetates and Their Application in Oxygen Heterocyclization Reactions. Journal of Organic Chemistry, 1998, 63, 9597-9600.	3.2	42
112	Ellagitannin Chemistry. The First Synthesis of Dehydrohexahydroxydiphenoate Esters from Oxidative Coupling of Unetherified Methyl Gallate. Journal of Organic Chemistry, 1997, 62, 8809-8813.	3.2	31
113	p-Hydroxyphenyl, Guaiacyl, and Syringyl Lignins Have Similar Inhibitory Effects on Wall Degradability. Journal of Agricultural and Food Chemistry, 1997, 45, 2530-2532.	5.2	102
114	Dehydrogenation Polymerâ^'Cell Wall Complexes as a Model for Lignified Grass Walls. Journal of Agricultural and Food Chemistry, 1996, 44, 1453-1459.	5.2	61
115	Galloyl-Derived Orthoquinones as Reactive Partners in Nucleophilic Additions and Dielsâ dlder Dimerizations:Â A Novel Route to the Dehydrodigalloyl Linker Unit of Agrimoniin-Type Ellagitannins. Journal of Organic Chemistry, 1996, 61, 6656-6665.	3.2	58
116	Ellagitannin Chemistry. Chemical Reviews, 1996, 96, 475-504.	47.7	255
117	p-coumaroylated syringyl units in maize lignin: Implications for β-ether cleavage by thioacidolysis. Phytochemistry, 1996, 43, 1189-1194.	2.9	137
118	Chemistry of Gallotannin-Derived o-Quinones: Reactivity toward Nucleophiles. Journal of Organic Chemistry, 1995, 60, 4982-4983.	3.2	43
119	Pathway of p-Coumaric Acid Incorporation into Maize Lignin As Revealed by NMR. Journal of the American Chemical Society, 1994, 116, 9448-9456.	13.7	403
120	Facile large-scale synthesis of coniferyl, sinapyl, and p-coumaryl alcohol. Journal of Agricultural and Food Chemistry, 1992, 40, 1108-1110.	5.2	163
121	Oxidative Conversion of Arenols intoortho-Quinols andortho-Quinone Monoketals– A Useful Tactic in Organic Synthesis. , 0, , 539-573.		22