Ze ai Huang

List of Publications by Citations

Source: https://exaly.com/author-pdf/5783729/zeai-huang-publications-by-citations.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

1,176 17 32 33 h-index g-index citations papers 8.9 1,541 4.7 33 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
32	Effect of contact interface between TiO2 and g-C3N4 on the photoreactivity of g-C3N4/TiO2 photocatalyst: (0 0 1) vs (1 0 1) facets of TiO2. <i>Applied Catalysis B: Environmental</i> , 2015 , 164, 420-427	21.8	386
31	Tuning the selectivity toward CO evolution in the photocatalytic conversion of CO2 with H2O through the modification of Ag-loaded Ga2O3 with a ZnGa2O4 layer. <i>Catalysis Science and Technology</i> , 2016 , 6, 1025-1032	5.5	73
30	Transformation of TiOF2 cube to a hollow nanobox assembly from anatase TiO2 nanosheets with exposed {001} facets via solvothermal strategy. <i>ACS Applied Materials & District Applied Material</i>	9.5	71
29	Atomically dispersed Mo atoms on amorphous g-C3N4 promotes visible-light absorption and charge carriers transfer. <i>Applied Catalysis B: Environmental</i> , 2019 , 250, 273-279	21.8	57
28	Monolithic g-C3N4/reduced graphene oxide aerogel with in situ embedding of Pd nanoparticles for hydrogenation of CO2 to CH4. <i>Applied Surface Science</i> , 2019 , 475, 953-960	6.7	50
27	Interfacial Oxygen Vacancy Engineered Two-Dimensional g-C3N4/BiOCl Heterostructures with Boosted Photocatalytic Conversion of CO2. <i>ACS Applied Energy Materials</i> , 2020 , 3, 4610-4618	6.1	49
26	Modulating electron density of vacancy site by single Au atom for effective CO photoreduction. <i>Nature Communications</i> , 2021 , 12, 1675	17.4	48
25	Ti powder-assisted synthesis of Ti3+ self-doped TiO2 nanosheets with enhanced visible-light photoactivity. <i>RSC Advances</i> , 2014 , 4, 19588-19593	3.7	44
24	Which is an Intermediate Species for Photocatalytic Conversion of CO2 by H2O as the Electron Donor: CO2 Molecule, Carbonic Acid, Bicarbonate, or Carbonate Ions?. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 8711-8721	3.8	43
23	B-O Bonds in Ultrathin Boron Nitride Nanosheets to Promote Photocatalytic Carbon Dioxide Conversion. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 9935-9943	9.5	39
22	Facile preparation of Ti3+ self-doped TiO2 nanosheets with dominant {001} facets using zinc powder as reductant. <i>Journal of Alloys and Compounds</i> , 2014 , 601, 88-93	5.7	37
21	Enhancement of CO Evolution by Modification of GaO with Rare-Earth Elements for the Photocatalytic Conversion of CO by HO. <i>Langmuir</i> , 2017 , 33, 13929-13935	4	32
20	Fabrication of well-shaped Sr2KTa5O15 nanorods with a tetragonal tungsten bronze structure by a flux method for artificial photosynthesis. <i>Applied Catalysis B: Environmental</i> , 2016 , 199, 272-281	21.8	28
19	CO2 capture, storage, and conversion using a praseodymium-modified Ga2O3 photocatalyst. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 19351-19357	13	25
18	N-Doped ordered mesoporous carbon grafted onto activated carbon fibre composites with enhanced activity for the electro-Fenton degradation of Brilliant Red X3B dye. <i>RSC Advances</i> , 2014 , 4, 60168-60175	3.7	19
17	Flux method fabrication of potassium rare-earth tantalates for CO2 photoreduction using H2O as an electron donor. <i>Catalysis Today</i> , 2018 , 300, 173-182	5.3	18
16	Insights into the Nonthermal Effects of Light in Dry Reforming of Methane to Enhance the H2/CO Ratio Near Unity over Ni/Ga2O3. <i>ACS Catalysis</i> , 2021 , 11, 4730-4738	13.1	18

LIST OF PUBLICATIONS

15	Solar-light-driven photocatalytic production of peroxydisulfate over noble-metal loaded WO. <i>Chemical Communications</i> , 2019 , 55, 3813-3816	5.8	17
14	Effect of Pore Structure on the Electro-Fenton Activity of ACF@OMC Cathode. <i>Industrial & Engineering Chemistry Research</i> , 2015 , 54, 8492-8499	3.9	17
13	Ultrahigh surface density of Co-N2C single-atom-sites for boosting photocatalytic CO2 reduction to methanol. <i>Applied Catalysis B: Environmental</i> , 2022 , 300, 120695	21.8	14
12	Fabrication of TiO2 hollow microspheres by ammonia-induced self-transformation. <i>Journal of Alloys and Compounds</i> , 2014 , 612, 69-73	5.7	12
11	Recent progress in photocatalytic conversion of carbon dioxide over gallium oxide and its nanocomposites. <i>Current Opinion in Chemical Engineering</i> , 2018 , 20, 114-121	5.4	11
10	Metallic Pt and PtOx dual-cocatalyst-loaded WO3 for photocatalytic production of peroxydisulfate and hydrogen peroxide. <i>Journal of Materials Science</i> , 2020 , 55, 11829-11840	4.3	10
9	Mo Promotes Interfacial Interaction and Induces Oxygen Vacancies in 2D/2D of Mo-g-C3N4 and Bi2O2CO3 Photocatalyst for Enhanced NO Oxidation. <i>Industrial & Engineering Chemistry Research</i> , 2020 , 59, 9509-9518	3.9	9
8	Promotion of photocatalytic steam reforming of methane over Ag0/Ag+-SrTiO3. <i>Chinese Chemical Letters</i> , 2020 , 31, 1530-1534	8.1	9
7	Bi/BiOCl Nanosheets Enriched with Oxygen Vacancies to Enhance Photocatalytic CO2 Reduction. Transactions of Tianjin University, 2021 , 27, 155-164	2.9	8
6	Sodium Cation Substitution in SrKTaO toward Enhancement of Photocatalytic Conversion of CO Using HO as an Electron Donor. <i>ACS Omega</i> , 2017 , 2, 8187-8197	3.9	7
5	Photocatalytic Conversion of Carbon Dioxide over A2BTa5O15 (A = Sr, Ba; B = K, Na) Using Ammonia as an Efficient Sacrificial Reagent. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 8247-8	2 8 .3	7
4	Efficient photocatalytic carbon monoxide production from ammonia and carbon dioxide by the aid of artificial photosynthesis. <i>Chemical Science</i> , 2017 , 8, 5797-5801	9.4	6
3	Important Role of Strontium Atom on the Surface of SrKTaO with a Tetragonal Tungsten Bronze Structure to Improve Adsorption of CO for Photocatalytic Conversion of CO by HO. <i>ACS Applied Materials & Description of CO Structure </i>	9.5	6
2	Dual-Function Reaction Center for Simultaneous Activation of CH and O via Oxygen Vacancies during Direct Selective Oxidation of CH into CHOH. <i>ACS Applied Materials & Diterfaces</i> , 2021 , 13, 46694-46702	9.5	2
1	Intermolecular hydrogen bond modulating the selective coupling of protons and CO2 to CH4 over nitrogen-doped carbon layers modified cobalt. <i>Chemical Engineering Journal</i> , 2022 , 444, 136585	14.7	2