
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5783522/publications.pdf Version: 2024-02-01

Тим Гил

#	Article	IF	CITATIONS
1	Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nature Energy, 2016, 1, .	19.8	2,186
2	Dendrite-Free Lithium Deposition via Self-Healing Electrostatic Shield Mechanism. Journal of the American Chemical Society, 2013, 135, 4450-4456.	6.6	1,736
3	Mesoporous silicon sponge as an anti-pulverization structure for high-performance lithium-ion battery anodes. Nature Communications, 2014, 5, 4105.	5.8	1,160
4	Waterâ€Lubricated Intercalation in V ₂ O ₅ ·nH ₂ O for Highâ€Capacity and Highâ€Rate Aqueous Rechargeable Zinc Batteries. Advanced Materials, 2018, 30, 1703725.	11.1	1,084
5	Ternary Self-Assembly of Ordered Metal Oxideâ~'Graphene Nanocomposites for Electrochemical Energy Storage. ACS Nano, 2010, 4, 1587-1595.	7.3	795
6	Stable cycling of high-voltage lithium metal batteries in ether electrolytes. Nature Energy, 2018, 3, 739-746.	19.8	767
7	Highâ€Voltage Lithiumâ€Metal Batteries Enabled by Localized Highâ€Concentration Electrolytes. Advanced Materials, 2018, 30, e1706102.	11.1	761
8	Sodium Ion Stabilized Vanadium Oxide Nanowire Cathode for Highâ€Performance Zincâ€Ion Batteries. Advanced Energy Materials, 2018, 8, 1702463.	10.2	650
9	Reversible Sodium Ion Insertion in Single Crystalline Manganese Oxide Nanowires with Long Cycle Life. Advanced Materials, 2011, 23, 3155-3160.	11.1	638
10	Lewis Acid–Base Interactions between Polysulfides and Metal Organic Framework in Lithium Sulfur Batteries. Nano Letters, 2014, 14, 2345-2352.	4.5	623
11	Double-Shelled Nanocapsules of V ₂ O ₅ -Based Composites as High-Performance Anode and Cathode Materials for Li Ion Batteries. Journal of the American Chemical Society, 2009, 131, 12086-12087.	6.6	546
12	Highâ€Performance LiNi _{0.5} Mn _{1.5} O ₄ Spinel Controlled by Mn ³⁺ Concentration and Site Disorder. Advanced Materials, 2012, 24, 2109-2116.	11.1	434
13	Lowâ€Đefect and Lowâ€Porosity Hard Carbon with High Coulombic Efficiency and High Capacity for Practical Sodium Ion Battery Anode. Advanced Energy Materials, 2018, 8, 1703238.	10.2	414
14	Uniform yolk–shell Sn ₄ P ₃ @C nanospheres as high-capacity and cycle-stable anode materials for sodium-ion batteries. Energy and Environmental Science, 2015, 8, 3531-3538.	15.6	401
15	Self-Supported Li ₄ Ti ₅ O ₁₂ –C Nanotube Arrays as High-Rate and Long-Life Anode Materials for Flexible Li-Ion Batteries. Nano Letters, 2014, 14, 2597-2603.	4.5	397
16	New Nanoconfined Galvanic Replacement Synthesis of Hollow Sb@C Yolk–Shell Spheres Constituting a Stable Anode for High-Rate Li/Na-Ion Batteries. Nano Letters, 2017, 17, 2034-2042.	4.5	386
17	Oriented Nanostructures for Energy Conversion and Storage. ChemSusChem, 2008, 1, 676-697.	3.6	367
18	Graphene Decorated with PtAu Alloy Nanoparticles: Facile Synthesis and Promising Application for Formic Acid Oxidation. Chemistry of Materials, 2011, 23, 1079-1081.	3.2	366

#	Article	IF	CITATIONS
19	Sandwich-type functionalized graphene sheet-sulfur nanocomposite for rechargeable lithium batteries. Physical Chemistry Chemical Physics, 2011, 13, 7660.	1.3	347
20	Non-encapsulation approach for high-performance Li–S batteries through controlled nucleation and growth. Nature Energy, 2017, 2, 813-820.	19.8	326
21	A General Metalâ€Organic Framework (MOF)â€Derived Selenidation Strategy for In Situ Carbonâ€Encapsulated Metal Selenides as Highâ€Rate Anodes for Naâ€Ion Batteries. Advanced Functional Materials, 2018, 28, 1707573.	7.8	325
22	Facile synthesized nanorod structured vanadium pentoxide for high-rate lithium batteries. Journal of Materials Chemistry, 2010, 20, 9193.	6.7	316
23	Thermal Oxidation Strategy towards Porous Metal Oxide Hollow Architectures. Advanced Materials, 2008, 20, 2622-2627.	11.1	315
24	Recent developments in the chemical synthesis of inorganic porous capsules. Journal of Materials Chemistry, 2009, 19, 6073.	6.7	314
25	MOFâ€Derived Hollow Co ₉ S ₈ Nanoparticles Embedded in Graphitic Carbon Nanocages with Superior Liâ€lon Storage. Small, 2016, 12, 2354-2364.	5.2	306
26	Stabilizing the Nanostructure of SnO ₂ Anodes by Transition Metals: A Route to Achieve High Initial Coulombic Efficiency and Stable Capacities for Lithium Storage. Advanced Materials, 2017, 29, 1605006.	11.1	306
27	Joint Charge Storage for Highâ€Rate Aqueous Zinc–Manganese Dioxide Batteries. Advanced Materials, 2019, 31, e1900567.	11.1	299
28	Capacity Fading of Ni-Rich NCA Cathodes: Effect of Microcracking Extent. ACS Energy Letters, 2019, 4, 2995-3001.	8.8	297
29	Manipulating surface reactions in lithium–sulphur batteries using hybrid anode structures. Nature Communications, 2014, 5, 3015.	5.8	290
30	In Situ Transmission Electron Microscopy Observation of Microstructure and Phase Evolution in a SnO ₂ Nanowire during Lithium Intercalation. Nano Letters, 2011, 11, 1874-1880.	4.5	266
31	Electrospun Na3V2(PO4)3/C nanofibers as stable cathode materials for sodium-ion batteries. Nanoscale, 2014, 6, 5081.	2.8	266
32	Facile Synthesis of Highly Porous Ni–Sn Intermetallic Microcages with Excellent Electrochemical Performance for Lithium and Sodium Storage. Nano Letters, 2014, 14, 6387-6392.	4.5	257
33	Robust Pitaya-Structured Pyrite as High Energy Density Cathode for High-Rate Lithium Batteries. ACS Nano, 2017, 11, 9033-9040.	7.3	247
34	Synthesis of Mo2N nanolayer coated MoO2 hollow nanostructures as high-performance anode materials for lithium-ion batteries. Energy and Environmental Science, 2013, 6, 2691.	15.6	246
35	Energy Storage Materials from Nature through Nanotechnology: A Sustainable Route from Reed Plants to a Silicon Anode for Lithiumâ€lon Batteries. Angewandte Chemie - International Edition, 2015, 54, 9632-9636.	7.2	245
36	In Situ Generation of Few‣ayer Graphene Coatings on SnO ₂ â€SiC Coreâ€Shell Nanoparticles for Highâ€Performance Lithiumâ€Ion Storage. Advanced Energy Materials, 2012, 2, 95-102.	10.2	233

#	Article	IF	CITATIONS
37	Conflicting Roles of Nickel in Controlling Cathode Performance in Lithium Ion Batteries. Nano Letters, 2012, 12, 5186-5191.	4.5	231
38	MOFs nanosheets derived porous metal oxide-coated three-dimensional substrates for lithium-ion battery applications. Nano Energy, 2016, 26, 57-65.	8.2	224
39	Selfâ€Supported and Flexible Sulfur Cathode Enabled via Synergistic Confinement for Highâ€Energyâ€Density Lithium–Sulfur Batteries. Advanced Materials, 2019, 31, e1902228.	11.1	216
40	Mechanistic Understanding of Metal Phosphide Host for Sulfur Cathode in High-Energy-Density Lithium–Sulfur Batteries. ACS Nano, 2019, 13, 8986-8996.	7.3	215
41	In Situ Synthesis of MnS Hollow Microspheres on Reduced Graphene Oxide Sheets as High-Capacity and Long-Life Anodes for Li- and Na-Ion Batteries. ACS Applied Materials & Interfaces, 2015, 7, 20957-20964.	4.0	210
42	V ₂ O ₅ Polysulfide Anion Barrier for Long-Lived Li–S Batteries. Chemistry of Materials, 2014, 26, 3403-3410.	3.2	202
43	Advances in the Development of Singleâ€Atom Catalysts for Highâ€Energyâ€Density Lithium–Sulfur Batteries. Advanced Materials, 2022, 34, e2200102.	11.1	202
44	Carbonâ€Encapsulated Pyrite as Stable and Earthâ€Abundant High Energy Cathode Material for Rechargeable Lithium Batteries. Advanced Materials, 2014, 26, 6025-6030.	11.1	201
45	Ge/C Nanowires as High-Capacity and Long-Life Anode Materials for Li-Ion Batteries. ACS Nano, 2014, 8, 7051-7059.	7.3	198
46	Anisotropic Co3O4 porous nanocapsules toward high-capacity Li-ion batteries. Journal of Materials Chemistry, 2010, 20, 1506.	6.7	193
47	Uniform Hierarchical Fe ₃ O ₄ @Polypyrrole Nanocages for Superior Lithium Ion Battery Anodes. Advanced Energy Materials, 2016, 6, 1600256.	10.2	184
48	Hollow Nanostructured Anode Materials for Li-Ion Batteries. Nanoscale Research Letters, 2010, 5, 1525-1534.	3.1	177
49	Regulating Lithium Nucleation and Deposition via MOFâ€Đerived Co@Câ€Modified Carbon Cloth for Stable Li Metal Anode. Advanced Functional Materials, 2020, 30, 1909159.	7.8	170
50	Dense core–shell structured SnO2/C composites as high performance anodes for lithium ion batteries. Chemical Communications, 2010, 46, 1437.	2.2	169
51	Rapid and scalable route to CuS biosensors: a microwave-assisted Cu-complex transformation into CuS nanotubes for ultrasensitive nonenzymatic glucose sensor. Journal of Materials Chemistry, 2011, 21, 223-228.	6.7	162
52	Conductive Rigid Skeleton Supported Silicon as High-Performance Li-Ion Battery Anodes. Nano Letters, 2012, 12, 4124-4130.	4.5	160
53	Tube Formation in Nanoscale Materials. Nanoscale Research Letters, 2008, 3, 473-80.	3.1	156
54	Visualization of Charge Distribution in a Lithium Battery Electrode. Journal of Physical Chemistry Letters, 2010, 1, 2120-2123.	2.1	155

#	Article	IF	CITATIONS
55	High-performance PVDF-HFP based gel polymer electrolyte with a safe solvent in Li metal polymer battery. Journal of Energy Chemistry, 2020, 49, 80-88.	7.1	155
56	Inhibiting grain coarsening and inducing oxygen vacancies: the roles of Mn in achieving a highly reversible conversion reaction and a long life SnO ₂ –Mn–graphite ternary anode. Energy and Environmental Science, 2017, 10, 2017-2029.	15.6	152
57	Nanoporous spherical LiFePO4 for high performance cathodes. Energy and Environmental Science, 2011, 4, 885.	15.6	151
58	Three-dimensionally interconnected nickel–antimony intermetallic hollow nanospheres as anode material for high-rate sodium-ion batteries. Nano Energy, 2015, 16, 389-398.	8.2	150
59	Template-free solvothermal synthesis of yolk–shell V2O5 microspheres as cathode materials for Li-ion batteries. Chemical Communications, 2011, 47, 10380.	2.2	141
60	Design of porous Si/C–graphite electrodes with long cycle stability and controlled swelling. Energy and Environmental Science, 2017, 10, 1427-1434.	15.6	140
61	Phase Transformation and Lithiation Effect on Electronic Structure of Li _{<i>x</i>} FePO ₄ : An In-Depth Study by Soft X-ray and Simulations. Journal of the American Chemical Society, 2012, 134, 13708-13715.	6.6	136
62	Sandwich-like SnS/Polypyrrole Ultrathin Nanosheets as High-Performance Anode Materials for Li-Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 8502-8510.	4.0	133
63	Yolk–Shell Sn@C Eggette-like Nanostructure: Application in Lithium-Ion and Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 19438-19445.	4.0	129
64	Facile synthesis of NiCo2O4 nanorod arrays on Cu conductive substrates as superior anode materials for high-rate Li-ion batteries. CrystEngComm, 2013, 15, 1578.	1.3	125
65	Metal–Organic Framework-Derived NiSb Alloy Embedded in Carbon Hollow Spheres as Superior Lithium-Ion Battery Anodes. ACS Applied Materials & Interfaces, 2017, 9, 2516-2525.	4.0	116
66	Nanosheet-structured LiV3O8 with high capacity and excellent stability for high energy lithium batteries. Journal of Materials Chemistry, 2011, 21, 10077.	6.7	112
67	Hierarchical MoO2/N-doped carbon heteronanowires with high rate and improved long-term performance for lithium-ion batteries. Journal of Power Sources, 2016, 306, 78-84.	4.0	112
68	llmenite Nanotubes for High Stability and High Rate Sodium-Ion Battery Anodes. ACS Nano, 2017, 11, 5120-5129.	7.3	109
69	Template free synthesis of LiV ₃ O ₈ nanorods as a cathode material for high-rate secondary lithium batteries. Journal of Materials Chemistry, 2011, 21, 1153-1161.	6.7	105
70	One-pot synthesis of mesoporous interconnected carbon-encapsulated Fe3O4 nanospheres as superior anodes for Li-ion batteries. RSC Advances, 2012, 2, 2262.	1.7	103
71	Critical silicon-anode size for averting lithiation-induced mechanical failure of lithium-ion batteries. RSC Advances, 2013, 3, 7398.	1.7	101
72	Recent Progress in Organic–Inorganic Composite Solid Electrolytes for All‣olid‣tate Lithium Batteries. Chemistry - A European Journal, 2020, 26, 1720-1736.	1.7	100

#	Article	IF	CITATIONS
73	Solvothermal synthesis of CuS semiconductor hollow spheres based on a bubble template route. Journal of Crystal Growth, 2009, 311, 500-503.	0.7	98
74	FeP@C Nanotube Arrays Grown on Carbon Fabric as a Low Potential and Freestanding Anode for Highâ€Performance Liâ€ion Batteries. Small, 2018, 14, e1800793.	5.2	94
75	Free-standing V2O5 electrode for flexible lithium ion batteries. Electrochemistry Communications, 2011, 13, 383-386.	2.3	93
76	In situ reduction and coating of SnS ₂ nanobelts for free-standing SnS@polypyrrole-nanobelt/carbon-nanotube paper electrodes with superior Li-ion storage. Journal of Materials Chemistry A, 2015, 3, 5259-5265.	5.2	92
77	Hierarchical MoO ₂ /Mo ₂ C/C Hybrid Nanowires as High-Rate and Long-Life Anodes for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 19987-19993.	4.0	92
78	Enhancement of F-doping on the electrochemical behavior of carbon-coated LiFePO4 nanoparticles prepared by hydrothermal route. Electrochimica Acta, 2011, 56, 8833-8838.	2.6	89
79	Unraveling the Catalytic Activity of Fe–Based Compounds toward Li ₂ S <i>_x</i> in Li–S Chemical System from <i>d</i> – <i>p</i> Bands. Advanced Energy Materials, 2021, 11, 2100673.	10.2	89
80	Single-crystalline nanoporous Nb2O5 nanotubes. Nanoscale Research Letters, 2011, 6, 138.	3.1	88
81	Mild and cost-effective synthesis of iron fluoride–graphene nanocomposites for high-rate Li-ion battery cathodes. Journal of Materials Chemistry A, 2013, 1, 1969-1975.	5.2	87
82	Sn-based nanomaterials converted from SnS nanobelts: Facile synthesis, characterizations, optical properties and energy storage performances. Electrochimica Acta, 2010, 56, 243-250.	2.6	84
83	Cathodes for Aqueous Znâ€lon Batteries: Materials, Mechanisms, and Kinetics. Chemistry - A European Journal, 2021, 27, 830-860.	1.7	84
84	General strategy for one-pot synthesis of metal sulfide hollow spheres with enhanced photocatalytic activity. Applied Catalysis B: Environmental, 2012, 125, 180-188.	10.8	80
85	Unveiling critical size of coarsened Sn nanograins for achieving high round-trip efficiency of reversible conversion reaction in lithiated SnO2 nanocrystals. Nano Energy, 2018, 45, 255-265.	8.2	80
86	Tiny Li4Ti5O12 nanoparticles embedded in carbon nanofibers as high-capacity and long-life anode materials for both Li-ion and Na-ion batteries. Physical Chemistry Chemical Physics, 2013, 15, 20813.	1.3	78
87	In Situ Construction a Stable Protective Layer in Polymer Electrolyte for Ultralong Lifespan Solidâ€State Lithium Metal Batteries. Advanced Science, 2022, 9, e2104277.	5.6	78
88	A flexible composite solid electrolyte with a highly stable interphase for dendrite-free and durable all-solid-state lithium metal batteries. Journal of Materials Chemistry A, 2020, 8, 18043-18054.	5.2	77
89	A Self-Supporting Covalent Organic Framework Separator with Desolvation Effect for High Energy Density Lithium Metal Batteries. ACS Energy Letters, 2022, 7, 885-896.	8.8	76
90	Selfâ€Supported CoP Nanorod Arrays Grafted on Stainless Steel as an Advanced Integrated Anode for Stable and Longâ€Life Lithiumâ€lon Batteries. Chemistry - A European Journal, 2017, 23, 5198-5204.	1.7	75

#	Article	IF	CITATIONS
91	A scalable ternary SnO ₂ –Co–C composite as a high initial coulombic efficiency, large capacity and long lifetime anode for lithium ion batteries. Journal of Materials Chemistry A, 2018, 6, 7206-7220.	5.2	74
92	MOF-derived hollow TiO2@C/FeTiO3 nanoparticles as photoanodes with enhanced full spectrum light PEC activities. Applied Catalysis B: Environmental, 2019, 250, 369-381.	10.8	72
93	Recent Progress of P2â€Type Layered Transitionâ€Metal Oxide Cathodes for Sodiumâ€Ion Batteries. Chemistry - A European Journal, 2020, 26, 7747-7766.	1.7	72
94	Facile Synthesis of Na0.33V2O5 Nanosheet-Graphene Hybrids as Ultrahigh Performance Cathode Materials for Lithium Ion Batteries. ACS Applied Materials & Interfaces, 2015, 7, 17433-17440.	4.0	70
95	Self-assembled porous hierarchical-like CoO@C microsheets transformed from inorganic–organic precursors and their lithium-ion battery application. CrystEngComm, 2012, 14, 2669.	1.3	67
96	Restricting the Solubility of Polysulfides in Liâ€5 Batteries Via Electrolyte Salt Selection. Advanced Energy Materials, 2016, 6, 1600160.	10.2	66
97	C@MoS2@PPy sandwich-like nanotube arrays as an ultrastable and high-rate flexible anode for Li/Na-ion batteries. Energy Storage Materials, 2018, 14, 118-128.	9.5	65
98	Rational synthesis of ternary FeS@TiO2@C nanotubes as anode for superior Na-ion batteries. Chemical Engineering Journal, 2019, 359, 765-774.	6.6	64
99	Interface engineering for composite cathodes in sulfide-based all-solid-state lithium batteries. Journal of Energy Chemistry, 2021, 60, 32-60.	7.1	64
100	Cation-Induced Coiling of Vanadium Pentoxide Nanobelts. Nanoscale Research Letters, 2010, 5, 1619-1626.	3.1	63
101	Transition-metal redox evolution in LiNi0.5Mn0.3Co0.2O2 electrodes at high potentials. Journal of Power Sources, 2017, 360, 294-300.	4.0	62
102	Robust spindle-structured FeP@C for high-performance alkali-ion batteries anode. Electrochimica Acta, 2019, 312, 224-233.	2.6	62
103	Gram-scale and template-free synthesis of ultralong tin disulfide nanobelts and their lithium ion storage performances. Journal of Materials Chemistry A, 2013, 1, 1117-1122.	5.2	61
104	Li ₄ Ti ₅ O ₁₂ nanosheets as high-rate and long-life anode materials for sodium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 24446-24452.	5.2	61
105	Ultralow Volume Change of P2â€Type Layered Oxide Cathode for Naâ€Ion Batteries with Controlled Phase Transition by Regulating Distribution of Na ⁺ . Angewandte Chemie - International Edition, 2021, 60, 20960-20969.	7.2	59
106	A nanorod-like Ni-rich layered cathode with enhanced Li ⁺ diffusion pathways for high-performance lithium-ion batteries. Journal of Materials Chemistry A, 2021, 9, 2830-2839.	5.2	58
107	Deciphering the Oxygen Absorption Preâ€edge: A Caveat on its Application for Probing Oxygen Redox Reactions in Batteries. Energy and Environmental Materials, 2021, 4, 246-254.	7.3	56
108	Crystallization and functionality of inorganic materials. Materials Research Bulletin, 2012, 47, 2838-2842.	2.7	55

#	Article	IF	CITATIONS
109	Self-sacrificial template-directed ZnSe@C as high performance anode for potassium-ion batteries. Chemical Engineering Journal, 2020, 387, 124061.	6.6	55
110	Rational synthesis of Li ₄ Ti ₅ O ₁₂ /N-C nanotube arrays as advanced high-rate electrodes for lithium-ion batteries. Journal of Materials Chemistry A, 2018, 6, 3857-3863.	5.2	54
111	Enhancing the Electrochemical Performance of the LiMn ₂ O ₄ Hollow Microsphere Cathode with a LiNi _{0.5} Mn _{1.5} O ₄ Coated Layer. Chemistry - A European Journal, 2014, 20, 824-830.	1.7	53
112	MoS2 Nanosheets with Conformal Carbon Coating as Stable Anode Materials for Sodium-Ion Batteries. Electrochimica Acta, 2017, 254, 172-180.	2.6	53
113	Co-Substitution Enhances the Rate Capability and Stabilizes the Cyclic Performance of O3-Type Cathode NaNi _{0.45–<i>x</i>} Mn _{0.25} Ti _{0.3} Co _{<i>x</i>} O ₂ for Sodium-Ion Storage at High Voltage. ACS Applied Materials & Interfaces, 2019, 11, 7906-7913.	4.0	53
114	Recent progress of flexible sulfur cathode based on carbon host for lithium-sulfur batteries. Journal of Materials Science and Technology, 2020, 55, 56-72.	5.6	53
115	Facile Synthesis of Transitionâ€Metal Oxide Nanocrystals Embedded in Hollow Carbon Microspheres for Highâ€Rate Lithiumâ€Ionâ€Battery Anodes. Chemistry - A European Journal, 2013, 19, 9811-9816.	1.7	52
116	Iron Fluoride Hollow Porous Microspheres: Facile Solutionâ€Phase Synthesis and Their Application for Liâ€ion Battery Cathodes. Chemistry - A European Journal, 2014, 20, 5815-5820.	1.7	52
117	Why LiFePO ₄ is a safe battery electrode: Coulomb repulsion induced electron-state reshuffling upon lithiation. Physical Chemistry Chemical Physics, 2015, 17, 26369-26377.	1.3	52
118	Compositionally tuned NixSn alloys as anode materials for lithium-ion and sodium-ion batteries with a high pseudocapacitive contribution. Electrochimica Acta, 2019, 304, 246-254.	2.6	51
119	B,N Codoped Graphitic Nanotubes Loaded with Co Nanoparticles as Superior Sulfur Host for Advanced Li–S Batteries. Small, 2020, 16, e1906634.	5.2	50
120	Challenges and strategies of zinc anode for aqueous zinc-ion batteries. Materials Chemistry Frontiers, 2021, 5, 2201-2217.	3.2	50
121	Facile synthesis of P2-type Na _{0.4} Mn _{0.54} Co _{0.46} O ₂ as a high capacity cathode material for sodium-ion batteries. RSC Advances, 2015, 5, 51454-51460.	1.7	49
122	Solvothermal Synthesis of Uniform Co ₃ O ₄ /C Hollow Quasiâ€Nanospheres for Enhanced Lithium Ion Intercalation Applications. European Journal of Inorganic Chemistry, 2012, 2012, 3825-3829.	1.0	47
123	Monodisperse CoSn and NiSn Nanoparticles Supported on Commercial Carbon as Anode for Lithium- and Potassium-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 4414-4422.	4.0	46
124	Solvent-Free Method Prepared a Sandwich-like Nanofibrous Membrane-Reinforced Polymer Electrolyte for High-Performance All-Solid-State Lithium Batteries. ACS Applied Materials & Interfaces, 2020, 12, 21586-21595.	4.0	46
125	Self‧acrifice Template Construction of Uniform Yolk–Shell ZnS@C for Superior Alkaliâ€Ion Storage. Advanced Science, 2022, 9, e2200247.	5.6	46
126	Hollow bean-pod-like SiO ₂ -supported-SnO ₂ /C nanocomposites for durable lithium and sodium storage. Journal of Materials Chemistry A, 2017, 5, 1629-1636.	5.2	44

#	Article	IF	CITATIONS
127	Ultrafine ZnS Nanoparticles in the Nitrogen-Doped Carbon Matrix for Long-Life and High-Stable Potassium-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 11007-11017.	4.0	44
128	Amorphous FeF ₃ /C nanocomposite cathode derived from metal–organic frameworks for sodium ion batteries. RSC Advances, 2017, 7, 24004-24010.	1.7	43
129	Facile synthesis of three-dimensional porous interconnected carbon matrix embedded with Sb nanoparticles as superior anode for Na-ion batteries. Chemical Engineering Journal, 2019, 374, 502-510.	6.6	42
130	The importance of solid electrolyte interphase formation for long cycle stability full-cell Na-ion batteries. Nano Energy, 2016, 27, 664-672.	8.2	41
131	Facile synthesis of self-supported Mn ₃ O ₄ @C nanotube arrays constituting an ultrastable and high-rate anode for flexible Li-ion batteries. Journal of Materials Chemistry A, 2017, 5, 8555-8565.	5.2	41
132	An atomic-confined-space separator for high performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2020, 8, 1896-1903.	5.2	41
133	Insight into Reversible Conversion Reactions in SnO ₂ â€Based Anodes for Lithium Storage: A Review. Small, 2022, 18, e2201110.	5.2	40
134	Co–Sn Nanocrystalline Solid Solutions as Anode Materials in Lithiumâ€lon Batteries with High Pseudocapacitive Contribution. ChemSusChem, 2019, 12, 1451-1458.	3.6	38
135	General construction of lithiophilic 3D skeleton for dendrite-free lithium metal anode via a versatile MOF-derived route. Science China Materials, 2022, 65, 337-348.	3.5	38
136	A ZnGeP 2 /C anode for lithium-ion and sodium-ion batteries. Electrochemistry Communications, 2017, 77, 85-88.	2.3	37
137	Effects of TiO2 phase on the performance of Li4Ti5O12 anode for lithium-ion batteries. Journal of Alloys and Compounds, 2016, 689, 812-819.	2.8	36
138	Subzero temperature promotes stable lithium storage in SnO2. Energy Storage Materials, 2021, 36, 242-250.	9.5	36
139	Synergistic Effect of Lithium Salts with Fillers and Solvents in Composite Electrolytes for Superior Room-Temperature Solid-State Lithium Batteries. ACS Applied Energy Materials, 2022, 5, 2484-2494.	2.5	36
140	Wheat straw carbon matrix wrapped sulfur composites as a superior cathode for Li–S batteries. RSC Advances, 2015, 5, 100089-100096.	1.7	35
141	Effects of Anion Mobility on Electrochemical Behaviors of Lithium–Sulfur Batteries. Chemistry of Materials, 2017, 29, 9023-9029.	3.2	35
142	From chemistry to mechanics: bulk modulus evolution of Li–Si and Li–Sn alloys via the metallic electronegativity scale. Physical Chemistry Chemical Physics, 2013, 15, 17658.	1.3	34
143	Facile synthesis of uniform MoO2/Mo2CTx heteromicrospheres as high-performance anode materials for lithium-ion batteries. Journal of Power Sources, 2017, 363, 392-403.	4.0	34
144	Nanoconfined Oxidation Synthesis of Nâ€Doped Carbon Hollow Spheres and MnO ₂ Encapsulated Sulfur Cathode for Superior Liâ€S Batteries. Chemistry - A European Journal, 2018, 24, 4573-4582.	1.7	34

#	Article	IF	CITATIONS
145	Electrospun Spinel LiNi _{0.5} Mn _{1.5} O ₄ Hierarchical Nanofibers as 5 V Cathode Materials for Lithiumâ€ion Batteries. ChemPlusChem, 2013, 78, 636-641.	1.3	33
146	Hollow spheres of Mo2C@C as synergistically confining sulfur host for superior Li–S battery cathode. Electrochimica Acta, 2020, 332, 135482.	2.6	33
147	Inâ€ S itu Synthesis of Carbonâ€Encapsulated Atomic Cobalt as Highly Efficient Polysulfide Electrocatalysts for Highly Stable Lithium–Sulfur Batteries. Small, 2022, 18, e2106640.	5.2	33
148	Highly reversible conversion reaction in Sn2Fe@SiOx nanocomposite: A high initial Coulombic efficiency and long lifetime anode for lithium storage. Energy Storage Materials, 2018, 13, 257-266.	9.5	32
149	Nano-spatially confined and interface-controlled lithiation–delithiation in an <i>in situ</i> formed (SnS–SnS ₂ –S)/FLG composite: a route to an ultrafast and cycle-stable anode for lithium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 15320-15332.	5.2	32
150	Pomegranate-like structured Nb2O5/Carbon@N-doped carbon composites as ultrastable anode for advanced sodium/potassium-ion batteries. Journal of Colloid and Interface Science, 2022, 613, 84-93.	5.0	32
151	Facile synthesis of layered LiV3O8 hollow nanospheres as superior cathode materials for high-rate Li-ion batteries. RSC Advances, 2012, 2, 10470.	1.7	31
152	A nanorod FeP@phosphorus-doped carbon composite for high-performance lithium-ion batteries. Journal of Alloys and Compounds, 2018, 763, 296-304.	2.8	30
153	Structural and Electrochemical Properties of Low-Cobalt-Content LiNi _{0.6+<i>x</i>} Co _{0.2â€"<i>x</i>} Mn _{0.2} O ₂ (0.0 â‰)¤Tj ET(28253-28263.	2q110.7	84314 rgBT
154	Phase tuning of P2/O3-type layered oxide cathode for sodium ion batteries via a simple Li/F co-doping route. Chemical Engineering Journal, 2022, 431, 134273.	6.6	30
155	One-pot facile synthesis of hierarchical hollow microspheres constructed with MnO2 nanotubes and their application in lithium storage and water treatment. RSC Advances, 2013, 3, 25937.	1.7	29
156	Scalable One-Pot Synthesis of Hierarchical Bi@C Bulk with Superior Lithium-Ion Storage Performances. ACS Applied Materials & amp; Interfaces, 2020, 12, 51478-51487.	4.0	29
157	SnS2/g-C3N4/graphite nanocomposites as durable lithium-ion battery anode with high pseudocapacitance contribution. Electrochimica Acta, 2020, 349, 136369.	2.6	29
158	Introducing NO ₃ [–] into Carbonateâ€Based Electrolytes via Covalent Organic Framework to Incubate Stable Interface for Liâ€Metal Batteries. Advanced Functional Materials, 2022, 32,	7.8	29
159	Template Route to Chemically Engineering Cavities at Nanoscale: A Case Study of Zn(OH)2 Template. Nanoscale Research Letters, 2010, 5, 1779-1787.	3.1	28
160	Solvothermal synthesis of copper sulfide semiconductor micro/nanostructures. Materials Research Bulletin, 2010, 45, 309-313.	2.7	27
161	Shape-controlled hydrothermal synthesis of ferroelectric Bi4Ti3O12 nanostructures. CrystEngComm, 2013, 15, 1397.	1.3	27
162	An EOG-based wheelchair robotic arm system for assisting patients with severe spinal cord injuries. Journal of Neural Engineering, 2019, 16, 026021.	1.8	27

#	Article	IF	CITATIONS
163	Surface/Interface Structure and Chemistry of Lithium–Sulfur Batteries: From Density Functional Theory Calculations' Perspective. Advanced Energy and Sustainability Research, 2021, 2, 2100007.	2.8	27
164	Challenges and Modification Strategies of Ni-Rich Cathode Materials Operating at High-Voltage. Nanomaterials, 2022, 12, 1888.	1.9	27
165	MoS 2 /cotton-derived carbon fibers with enhanced cyclic performance for sodium-ion batteries. Applied Surface Science, 2017, 413, 169-174.	3.1	26
166	Enabling a highly reversible conversion reaction in a lithiated nano-SnO ₂ film coated with Al ₂ O ₃ by atomic layer deposition. Journal of Materials Chemistry A, 2018, 6, 4374-4385.	5.2	26
167	Adding Metal Carbides to Suppress the Crystalline Li15Si4 Formation: A Route toward Cycling Durable Si-Based Anodes for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 38727-38736.	4.0	26
168	Challenges and Development of Composite Solid Electrolytes for All-solid-state Lithium Batteries. Chemical Research in Chinese Universities, 2021, 37, 210-231.	1.3	26
169	Fluorine-substituted O3-type NaNi0.4Mn0.25Ti0.3Co0.05O2â^'F cathode with improved rate capability and cyclic stability for sodium-ion storage at high voltage. Journal of Energy Chemistry, 2021, 60, 341-350.	7.1	26
170	Rational synthesis of three-dimensional porous ZnCo2O4 film with nanowire walls via simple hydrothermal method. Materials Letters, 2014, 115, 208-211.	1.3	25
171	Enhanced cyclic performance of SnO2-CuO-graphite nano-sheets as anode for Li-ion battery. Materials Letters, 2016, 185, 9-12.	1.3	25
172	In situ carbon-coating and Ostwald ripening-based route for hollow Ni ₃ S ₄ @C spheres with superior Li-ion storage performances. RSC Advances, 2016, 6, 101752-101759.	1.7	25
173	Self-supported hierarchical porous Li4Ti5O12/carbon arrays for boosted lithium ion storage. Journal of Energy Chemistry, 2021, 54, 754-760.	7.1	25
174	Freestanding Sodium Vanadate/Carbon Nanotube Composite Cathodes with Excellent Structural Stability and High Rate Capability for Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 816-826.	4.0	25
175	Nano Structures via Chemistry. Nanoscience and Nanotechnology Letters, 2011, 3, 337-364.	0.4	25
176	Dual arbon onfined SnS Nanostructure with High Capacity and Long Cycle Life for Lithiumâ€ion Batteries. Energy and Environmental Materials, 2021, 4, 562-568.	7.3	24
177	Construction of Fe7Se8@Carbon nanotubes with enhanced sodium/potassium storage. Journal of Colloid and Interface Science, 2022, 626, 355-363.	5.0	24
178	Plasma milling modified Sb2S3-graphite nanocomposite as a highly reversible alloying-conversion anode material for lithium storage. Electrochimica Acta, 2019, 310, 26-37.	2.6	23
179	Scalable synthesis of Li _{1.2} Mn _{0.54} Ni _{0.13} Co _{0.13} O ₂ /LiNi _{0.5<!--<br-->composites as stable and high capacity cathodes for Li-ion batteries. RSC Advances, 2015, 5, 84673-84679.}	sub ⊵. Mn <s< td=""><td>ub21.5</td></s<>	ub 21 .5
180	A Scalable Approach to Na ₂ FeP ₂ O ₇ @Carbon/Expanded Graphite as a Lowâ€Cost and Highâ€Performance Cathode for Sodiumâ€Ion Batteries. ChemElectroChem, 2020, 7, 3874-3882.	1.7	21

#	Article	IF	CITATIONS
181	Solution-based route to semiconductor film: Well-aligned ZnSe nanobelt arrays. Thin Solid Films, 2009, 517, 4814-4817.	0.8	20
182	Facile Synthesis of Carbonâ€Encapsulated Li ₄ Ti ₅ O ₁₂ @C Hollow Microspheres as Superior Anode Materials for Liâ€Ion Batteries. European Journal of Inorganic Chemistry, 2014, 2014, 2073-2079.	1.0	20
183	Fe ₃ O ₄ @C Nanotubes Grown on Carbon Fabric as a Freeâ€6tanding Anode for Highâ€Performance Liâ€Ion Batteries. Chemistry - A European Journal, 2020, 26, 14708-14714.	1.7	19
184	Ni-Rich Layered Oxide with Preferred Orientation (110) Plane as a Stable Cathode Material for High-Energy Lithium-Ion Batteries. Nanomaterials, 2020, 10, 2495.	1.9	19
185	Stable Lithium Storage at Subzero Temperatures for Highâ€capacity Co ₃ O ₄ @graphene Composite Anodes. ChemNanoMat, 2021, 7, 61-70.	1.5	19
186	Direct Detection and Visualization of the H ⁺ Reaction Process in a VO ₂ Cathode for Aqueous Zinc-Ion Batteries. Journal of Physical Chemistry Letters, 2021, 12, 7076-7084.	2.1	19
187	Na0.33V2O5 nanosheet@graphene composites: Towards high performance cathode materials for sodium ion batteries. Materials Letters, 2016, 183, 346-350.	1.3	17
188	Improved coulombic efficiency and cycleability of SnO ₂ –Cu–graphite composite anode with dual scale embedding structure. RSC Advances, 2016, 6, 13384-13391.	1.7	17
189	Li2CO3 induced stable SEI formation: An efficient strategy to boost reversibility and cyclability of Li storage in SnO2 anodes. Science China Materials, 2021, 64, 2683-2696.	3.5	17
190	Functional catalysts for polysulfide conversion in Li–S batteries: from micro/nanoscale to single atom. Rare Metals, 2022, 41, 1080-1100.	3.6	16
191	Boosting fast and stable symmetric sodium-ion storage by synergistic engineering and amorphous structure. Nano Energy, 2022, 100, 107481.	8.2	16
192	Reduced graphene oxide anchored tin sulfide hierarchical microspheres with superior Li-ion storage performance. Ionics, 2016, 22, 1811-1818.	1.2	15
193	Ultralow Volume Change of P2â€Type Layered Oxide Cathode for Naâ€Ion Batteries with Controlled Phase Transition by Regulating Distribution of Na ⁺ . Angewandte Chemie, 2021, 133, 21128-21137.	1.6	15
194	Multifunctional Metal Phosphides as Superior Host Materials for Advanced Lithium‣ulfur Batteries. Chemistry - A European Journal, 2021, 27, 13494-13512.	1.7	15
195	AgP2/C as an anode for high rate performance lithium-ion batteries. Journal of Alloys and Compounds, 2018, 762, 246-253.	2.8	14
196	Microstructures constructed by MoSe2/C nanoplates sheathed in N-doped carbon for efficient sodium (potassium) storage. Journal of Alloys and Compounds, 2022, 890, 161746.	2.8	14
197	High sulfur loading in activated bamboo-derived porous carbon as a superior cathode for rechargeable Li–S batteries. Arabian Journal of Chemistry, 2019, 12, 3517-3525.	2.3	13
198	Flowerlike Ti-Doped MoO ₃ Conductive Anode Fabricated by a Novel NiTi Dealloying Method: Greatly Enhanced Reversibility of the Conversion and Intercalation Reaction. ACS Applied Materials & Interfaces, 2020, 12, 8240-8248.	4.0	13

#	Article	IF	CITATIONS
199	Construction of TiP2O7 nanosheets/rGO hierarchical Flower-like heterostructures for superfast and ultralong lithiation/delithiation process. Applied Surface Science, 2020, 513, 145854.	3.1	13
200	In-situ introducing TiP2 nanocrystals in black phosphorus anode to promote high rate-capacity synergy. Journal of Power Sources, 2021, 499, 229979.	4.0	13
201	Synthesis of amorphous SeP2/C composite by plasma assisted ball milling for high-performance anode materials of lithium and sodium-ion batteries. Progress in Natural Science: Materials International, 2021, 31, 567-574.	1.8	13
202	CoO/Graphene Composite for High Performance Li-Ion Battery Anode. Materials Focus, 2012, 1, 160-163.	0.4	13
203	Phenyl 4-Fluorobenzene Sulfonate as a Versatile Film-Forming Electrolyte Additive for Wide-Temperature-Range NCM811//Graphite Batteries. ACS Applied Energy Materials, 2022, 5, 6324-6334.	2.5	13
204	Facile Synthesis of Peapodâ€Like Cu ₃ Ge/Ge@C as a Highâ€Capacity and Longâ€Life Anode for Liâ€lo Batteries. Chemistry - A European Journal, 2019, 25, 11486-11493.	^{,1} 1.7	12
205	SnSex (xÂ=Â1, 2) nanoparticles encapsulated in carbon nanospheres with reversible electrochemical behaviors for lithium-ion half/full cells. Chemical Engineering Journal, 2022, 431, 133463.	6.6	12
206	Dramatically Enhanced Liâ€lon Storage of ZnO@C Anodes through TiO ₂ Homogeneous Hybridization. Chemistry - A European Journal, 2019, 25, 582-589.	1.7	11
207	Micro-sized FeS2@FeSO4 core-shell composite for advanced lithium storage. Journal of Alloys and Compounds, 2020, 814, 151922.	2.8	11
208	Good cycling stability and high initial efficiency demonstrated in full cells with limited lithium source for an advanced SnO2–Co–C composite anode. Electrochimica Acta, 2020, 334, 135640.	2.6	11
209	Scalable synthesis of Li2GeO3/expanded graphite as a high-performance anode for Li-ion batteries. Journal of Alloys and Compounds, 2022, 898, 162893.	2.8	11
210	Construction of SnS-Mo-graphene nanosheets composite for highly reversible and stable lithium/sodium storage. Journal of Materials Science and Technology, 2022, 121, 190-198.	5.6	11
211	Fabrication of α-Bi2O3 Microrods by Solvothermal Method and Their Photocatalytic Performance. Chemistry Letters, 2014, 43, 547-549.	0.7	10
212	From ZnSn(OH) 6 to SnS 2 : Topotactic transformation synthesis of SnS 2 hierarchical microcubes with superior Li-ion storage performance. Materials Research Bulletin, 2017, 96, 28-34.	2.7	10
213	Recent advances in bifunctional catalysts for zinc-air batteries: Synthesis and potential mechanisms. Science China Technological Sciences, 2022, 65, 2221-2245.	2.0	10
214	Boosted lithium storage cycling stability of TiP2 by in-situ partial self-decomposition and nano-spatial confinement. Journal of Power Sources, 2021, 485, 229337.	4.0	9
215	CoO Porous Nanospindles/Graphene Nanocomposites as Anode Materials for Li-Ion Batteries. Materials Focus, 2012, 1, 149-153.	0.4	8
216	Structural Evolution in P2â€ŧype Layered Oxide Cathode Materials for Sodiumâ€lon Batteries. ChemNanoMat, 2022, 8, .	1.5	8

#	Article	IF	CITATIONS
217	Gel-assisted synthesis of Cu Co S nanosheets for lithium-ion batteries. Applied Surface Science, 2019, 488, 537-545.	3.1	7
218	Facile Synthesis of Yolk–Shell Bi@C Nanospheres with Superior Li-ion Storage Performances. Acta Metallurgica Sinica (English Letters), 2021, 34, 347-353.	1.5	7
219	Substantial Doping Engineering in Layered LiNi _{0.5+x} Co _{0.2â^x} Mn _{0.3} O ₂ Materials for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2021, 168, 060534.	1.3	7
220	GO@Se@Ni Cathode Materials for Lithium-Selenium Battery. Journal of the Electrochemical Society, 2019, 166, A5259-A5264.	1.3	6
221	A TEMPLATE-FREE SOLUTION METHOD BASED ON SOLID-LIQUID INTERFACE REACTION TOWARDS DENDRITIC PbSe NANOSTRUCTURES. Modern Physics Letters B, 2009, 23, 3817-3823.	1.0	5
222	Synthesis of Cu ₂ O Nanocrystals and Cu ₂ O/Graphene Composite Paper for Lithium-Ion Battery Anode Materials. Energy and Environment Focus, 2012, 1, 50-56.	0.3	5
223	Morphology-controlled synthesis of CdSe semiconductor through a low-temperature hydrothermal method. Physica Scripta, 2010, T139, 014075.	1.2	4
224	Fabrication of ZnSe/C Hollow Polyhedrons for Lithium Storage. Chemistry - A European Journal, 2021, 27, 14989-14995.	1.7	4
225	Understanding the phenomenon of capacity increasing along cycles: in the case of an ultralong-life and high-rate SnSe-Mo-C anode for lithium storage. Journal of Energy Chemistry, 2022, , .	7.1	4
226	The Contact Interface Engineering of All‣ulfideâ€Based Solid State Batteries via Infiltrating Dissoluble Sulfide Electrolyte. Energy and Environmental Materials, 2023, 6, .	7.3	4
227	Facile Synthesis of FeSn ₂ Alloy Nanoparticles as Anode Materials for Lithium-Ion Batteries. Energy and Environment Focus, 2013, 2, 63-67.	0.3	3
228	Hierarchical <1>m 1 -BiVO ₄ Microdendrites: Hydrothermal Template-Free Crystallization and Their Primary Visible-Light Photocatalyst Application. Energy and Environment Focus, 2013, 2, 79-84.	0.3	3
229	Advanced Nanostructured Cathode and Anode Materials for High-Performance Li-Ion Batteries. Energy and Environment Focus, 2012, 1, 19-38.	0.3	3
230	Ligand-Assisted Rational Crystallization of CuO Nanocrystals and Their Electrochemical Performances. Energy and Environment Focus, 2012, 1, 109-118.	0.3	3
231	Reversible formation of metastable Sn-rich solid solution in SnO2-based anode for high-performance lithium storage. Applied Materials Today, 2021, 25, 101242.	2.3	3
232	A GENERAL TEMPLATE-FREE AND SURFACTANT-FREE SOLUTION-BASED ROUTE TOWARDS DENDRITIC TRANSITION-METAL SULFIDE NANOSTRUCTURES. Modern Physics Letters B, 2009, 23, 3777-3783.	1.0	2
233	Facile Synthesis of Hierarchical Dandelion-Like NiCo ₂ O ₄ Microspheres and Their Lithium-Ion Battery Application. Materials Focus, 2013, 2, 39-43.	0.4	2
	Li–S Batteries: Unraveling the Catalytic Activity of Fe–Based Compounds toward		

Li₂S<i>_x</i> in Liâ€"S Chemical System from <i>d</i>â€"<i>p</i> Bands (Adv.) Tj ETQq01@@rgBT /@verlock 1

#	Article	IF	CITATIONS
235	Synthesis of LiNi _{0.5} Mn _{1.5} O ₄ Nano- and Micropolyhedra via Sol–Gel Method and Their Application for Li-Ion Batteries. Energy and Environment Focus, 2013, 2, 68-72.	0.3	1
236	Li4Ti5O12 Modified LiMn2O4 Hollow Microspheres as High Rate Cathode Materials for Lithium-Ion Batteries. Energy and Environment Focus, 2013, 2, 235-239.	0.3	1
237	Nanoconfined Oxidation Synthesis of Nâ€Đoped Carbon Hollow Spheres and MnO 2 Encapsulated Sulfur Cathode for Superior Li‧ Batteries. Chemistry - A European Journal, 2018, 24, 4472-4472.	1.7	1
238	Frontispiece: Recent Progress of P2â€Type Layered Transitionâ€Metal Oxide Cathodes for Sodiumâ€lon Batteries. Chemistry - A European Journal, 2020, 26, .	1.7	1
239	Rapid Synthesis of Rod-Like Pyrolucite MnO2 by Microwave-Assisted Hydrothermal Method. Materials Focus, 2013, 2, 131-135.	0.4	1
240	Frontispiece: Multifunctional Metal Phosphides as Superior Host Materials for Advanced Lithium‣ulfur Batteries. Chemistry - A European Journal, 2021, 27, .	1.7	0
241	Frontispiece: Cathodes for Aqueous Znâ€lon Batteries: Materials, Mechanisms, and Kinetics. Chemistry - A European Journal, 2021, 27, .	1.7	0
242	Decorating of Manganese Oxide Nanowires with Tin Oxide for Li-Ion Battery Anode. Energy and Environment Focus, 2012, 1, 105-108.	0.3	0
243	Flexible and Self-Supported Sulfur Cathode for High-Energy-Density Lithium-Sulfur Batteries. ECS Meeting Abstracts, 2019, , .	0.0	0