David Alan Young

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5783455/publications.pdf

Version: 2024-02-01

82 papers 4,447 citations

35 h-index 106344 65 g-index

113 all docs

113 docs citations

113 times ranked 5597 citing authors

#	Article	IF	CITATIONS
1	Matrix metalloproteinaseâ€13 is fully activated by neutrophil elastase and inactivates its serpin inhibitor, alphaâ€1 antitrypsin: Implications for osteoarthritis. FEBS Journal, 2022, 289, 121-139.	4.7	20
2	Osteoarthritis year in review: genetics, genomics, epigenetics. Osteoarthritis and Cartilage, 2022, 30, 216-225.	1.3	23
3	Highly efficient CRISPR-Cas9-mediated editing identifies novel mechanosensitive microRNA-140 targets in primary human articular chondrocytes. Osteoarthritis and Cartilage, 2022, , .	1.3	6
4	HDAC6 regulates NF-κB signalling to control chondrocyte IL-1-induced MMP and inflammatory gene expression. Scientific Reports, 2022, 12, 6640.	3.3	5
5	Dynamic chromatin accessibility landscape changes following interleukin-1 stimulation. Epigenetics, 2021, 16, 106-119.	2.7	8
6	Regulation of microRNAâ€221, â€222, â€21 and â€27 in articular cartilage subjected to abnormal compressive forces. Journal of Physiology, 2021, 599, 143-155.	2.9	12
7	OATargets: a knowledge base of genes associated with osteoarthritis joint damage in animals. Annals of the Rheumatic Diseases, 2021, 80, 376-383.	0.9	21
8	Kinetics Analysis of Circulating MicroRNAs Unveils Markers of Failed Myocardial Reperfusion. Clinical Chemistry, 2020, 66, 247-256.	3.2	8
9	Correlation of Infinium HumanMethylation450K and MethylationEPIC BeadChip arrays in cartilage. Epigenetics, 2020, 15, 594-603.	2.7	10
10	microRNA-seq of cartilage reveals an overabundance of miR-140-3p which contains functional isomiRs. Rna, 2020, 26, 1575-1588.	3.5	17
11	The role of microRNA-3085 in chondrocyte function. Scientific Reports, 2020, 10, 21923.	3.3	5
12	<scp>CRELD2</scp> Is a Novel <scp>LRP1</scp> Chaperone That Regulates Noncanonical <scp>WNT</scp> Signaling in Skeletal Development. Journal of Bone and Mineral Research, 2020, 35, 1452-1469.	2.8	12
13	Histone ChIPâ€Seq identifies differential enhancer usage during chondrogenesis as critical for defining cellâ€type specificity. FASEB Journal, 2020, 34, 5317-5331.	0.5	18
14	DNA hypomethylation during MSC chondrogenesis occurs predominantly at enhancer regions. Scientific Reports, 2020, 10, 1169.	3.3	18
15	Interplay between genetics and epigenetics in osteoarthritis. Nature Reviews Rheumatology, 2020, 16, 268-281.	8.0	91
16	miR-324-5p is up regulated in end-stage osteoarthritis and regulates Indian Hedgehog signalling by differing mechanisms in human and mouse. Matrix Biology, 2019, 77, 87-100.	3.6	37
17	Identification of long non-coding RNAs expressed in knee and hip osteoarthritic cartilage. Osteoarthritis and Cartilage, 2019, 27, 694-702.	1.3	34
18	Recent advances in understanding the regulation of metalloproteinases. F1000Research, 2019, 8, 195.	1.6	34

#	Article	IF	CITATIONS
19	The function of microRNAs in cartilage and osteoarthritis. Clinical and Experimental Rheumatology, 2019, 37 Suppl 120, 40-47.	0.8	42
20	The first international workshop on the epigenetics of osteoarthritis. Connective Tissue Research, 2017, 58, 37-48.	2.3	6
21	Serum snoRNAs as biomarkers for joint ageing and post traumatic osteoarthritis. Scientific Reports, 2017, 7, 43558.	3.3	44
22	Long noncoding RNA <i>ROCR</i> contributes to SOX9 expression and chondrogenic differentiation of human mesenchymal stem cells. Development (Cambridge), 2017, 144, 4510-4521.	2.5	70
23	250.â€∱UNDERSTANDING ABERRANT IL-6 MEDIATED CD4+ T-CELL SIGNALLING IN EARLY RHEUMATOID ARTHRITIS Rheumatology, 2017, 56, .	S. _{1.9}	O
24	08.13â€Understanding aberrant il-6 mediated cd4+ t-cell signalling in early rheumatoid arthritis. , 2017, , .		0
25	Detecting new microRNAs in human osteoarthritic chondrocytes identifies miR-3085 as a human, chondrocyte-selective, microRNA. Osteoarthritis and Cartilage, 2016, 24, 534-543.	1.3	38
26	Oxidative changes and signalling pathways are pivotal in initiating age-related changes in articular cartilage. Annals of the Rheumatic Diseases, 2016, 75, 449-458.	0.9	135
27	The microRNA-29 family in cartilage homeostasis and osteoarthritis. Journal of Molecular Medicine, 2016, 94, 583-596.	3.9	106
28	Genome-Wide MicroRNA and Gene Analysis of Mesenchymal Stem Cell Chondrogenesis Identifies an Essential Role and Multiple Targets for miR-140-5p. Stem Cells, 2015, 33, 3266-3280.	3.2	72
29	Protection against murine osteoarthritis by inhibition of the 26S proteasome and lysine-48 linked ubiquitination. Annals of the Rheumatic Diseases, 2015, 74, 1580-1587.	0.9	27
30	Methylation quantitative trait locus analysis of osteoarthritis links epigenetics with genetic risk. Human Molecular Genetics, 2015, 24, 7432-7444.	2.9	48
31	Differential DNA methylation and expression of inflammatory and zinc transporter genes defines subgroups of osteoarthritic hip patients. Annals of the Rheumatic Diseases, 2015, 74, 1778-1782.	0.9	23
32	Glycogen Synthase Kinase 3 Inhibition Stimulates Human Cartilage Destruction and Exacerbates Murine Osteoarthritis. Arthritis and Rheumatology, 2014, 66, 2175-2187.	5.6	22
33	Characterization of the Cartilage DNA Methylome in Knee and Hip Osteoarthritis. Arthritis and Rheumatology, 2014, 66, 2450-2460.	5.6	146
34	A Negative Feedback Loop Mediated by STAT3 Limits Human Th17 Responses. Journal of Immunology, 2014, 193, 1142-1150.	0.8	37
35	Epigenetic Mechanisms and Non-coding RNAs in Osteoarthritis. Current Rheumatology Reports, 2013, 15, 353.	4.7	49
36	Mitochondrial dysfunction in osteoarthritis is associated with downâ€regulation of superoxide dismutase 2. Arthritis and Rheumatism, 2013, 65, 378-387.	6.7	113

#	Article	IF	CITATIONS
37	Class I Histone Deacetylase Inhibition Modulates Metalloproteinase Expression and Blocks Cytokineâ€Induced Cartilage Degradation. Arthritis and Rheumatism, 2013, 65, 1822-1830.	6.7	70
38	Editorial: More evidence for a role of CpG methylation in the pathogenesis of osteoarthritis. Arthritis and Rheumatism, 2013, 65, 555-558.	6.7	4
39	Matrix Metalloproteinase 13 Expression in Response to Doubleâ€Stranded RNA in Human Chondrocytes. Arthritis and Rheumatism, 2013, 65, 1290-1301.	6.7	23
40	The Identification of Trans-acting Factors That Regulate the Expression of GDF5 via the Osteoarthritis Susceptibility SNP rs143383. PLoS Genetics, 2013, 9, e1003557.	3.5	53
41	Understanding CpG methylation in the context of osteoarthritis. Epigenomics, 2012, 4, 593-595.	2.1	8
42	Leptin produced by joint white adipose tissue induces cartilage degradation via upregulation and activation of matrix metalloproteinases. Annals of the Rheumatic Diseases, 2012, 71, 455-462.	0.9	174
43	microRNA in Chondrogenesis, Cartilage and Osteoarthritis. Current Rheumatology Reviews, 2012, 8, 89-97.	0.8	3
44	Identification of the pathogenic pathways in osteoarthritic hip cartilage: commonality and discord between hip and knee OA. Osteoarthritis and Cartilage, 2012, 20, 1029-1038.	1.3	81
45	A CD4 T cell gene signature for early rheumatoid arthritis implicates interleukin 6-mediated STAT3 signalling, particularly in anti-citrullinated peptide antibody-negative disease. Annals of the Rheumatic Diseases, 2012, 71, 1374-1381.	0.9	67
46	The expression and function of microRNAs in chondrogenesis and osteoarthritis. Arthritis and Rheumatism, 2012, 64, 1909-1919.	6.7	204
47	cAMP response elementâ€binding (CREB) recruitment following a specific CpG demethylation leads to the elevated expression of the matrix metalloproteinase 13 in human articular chondrocytes and osteoarthritis. FASEB Journal, 2012, 26, 3000-3011.	0.5	96
48	Epigenetic mechanisms in cartilage and osteoarthritis: DNA methylation, histone modifications and microRNAs. Osteoarthritis and Cartilage, 2012, 20, 339-349.	1.3	152
49	Expression of the osteoarthritis-associated gene GDF5 is modulated epigenetically by DNA methylation. Human Molecular Genetics, 2011, 20, 3450-3460.	2.9	108
50	Differential Gene Expression Profiling of Metalloproteinases and Their Inhibitors. Spine, 2010, 35, 1101-1108.	2.0	30
51	Proteinases involved in matrix turnover during cartilage and bone breakdown. Cell and Tissue Research, 2010, 339, 221-235.	2.9	131
52	Matriptase is a novel initiator of cartilage matrix degradation in osteoarthritis. Arthritis and Rheumatism, 2010, 62, 1955-1966.	6.7	61
53	Lipophilic statins prevent matrix metalloproteinase-mediated cartilage collagen breakdown by inhibiting protein geranylgeranylation. Annals of the Rheumatic Diseases, 2010, 69, 2189-2198.	0.9	36
54	Lithium protects cartilage from cytokine-mediated degradation by reducing collagen-degrading MMP production via inhibition of the P38 mitogen-activated protein kinase pathway. Rheumatology, 2010, 49, 2043-2053.	1.9	46

#	Article	IF	CITATIONS
55	<i>MMP28</i> gene expression is regulated by Sp1 transcription factor acetylation. Biochemical Journal, 2010, 427, 391-400.	3.7	26
56	HDAC-mediated control of ERK- and PI3K-dependent TGF- \hat{l}^2 -induced extracellular matrix-regulating genes. Matrix Biology, 2010, 29, 602-612.	3.6	74
57	Superoxide dismutase downregulation in osteoarthritis progression and end-stage disease. Annals of the Rheumatic Diseases, 2010, 69, 1502-1510.	0.9	202
58	Pattern recognition receptor expression is not impaired in patients with chronic mucocutanous candidiasis with or without autoimmune polyendocrinopathy candidiasis ectodermal dystrophy. Clinical and Experimental Immunology, 2009, 156, 40-51.	2.6	22
59	The role of acetylation in Timp-1 regulation. International Journal of Experimental Pathology, 2008, 85, A18-A19.	1.3	O
60	Expression profiling of metalloproteinases and inhibitors in cartilage. International Journal of Experimental Pathology, 2008, 85, A23-A23.	1.3	0
61	Activation of p38 and JNK MAPK pathways abrogates requirement for new protein synthesis for phorbol ester mediated induction of select MMP and TIMP genes. Matrix Biology, 2008, 27, 128-138.	3.6	28
62	Differential Toll-like receptor-dependent collagenase expression in chondrocytes. Annals of the Rheumatic Diseases, 2008, 67, 1633-1641.	0.9	79
63	Synergistic Collagenase Expression and Cartilage Collagenolysis Are Phosphatidylinositol 3-Kinase/Akt Signaling-dependent. Journal of Biological Chemistry, 2008, 283, 14221-14229.	3.4	52
64	Differential Toll-like receptor-dependent collagenase expression in chondrocytes. Arthritis Research and Therapy, 2007, 9, P39.	3.5	0
65	Acetylation in the regulation of metalloproteinase and tissue inhibitor of metalloproteinases gene expression. Frontiers in Bioscience - Landmark, 2007, 12, 528.	3.0	21
66	Collagenase gene regulation by pro-inflammatory cytokines in cartilage. Frontiers in Bioscience - Landmark, 2007, 12, 536.	3.0	27
67	Metalloproteinase and inhibitor expression profiling of resorbing cartilage reveals pro-collagenase activation as a critical step for collagenolysis. Arthritis Research and Therapy, 2006, 8, R142.	3.5	61
68	Fibroblast activation protein alpha is expressed by chondrocytes following a pro-inflammatory stimulus and is elevated in osteoarthritis. Arthritis Research and Therapy, 2006, 8, R23.	3.5	71
69	Rac upregulates tissue inhibitor of metalloproteinase-1 expression by redox-dependent activation of extracellular signal-regulated kinase signaling. FEBS Journal, 2006, 273, 4754-4769.	4.7	14
70	Anesthesia for the child with Andersen's Syndrome. Paediatric Anaesthesia, 2005, 15, 1019-1020.	1.1	0
71	Differential effects of histone deacetylase inhibitors on phorbol ester- and TGF- \hat{l}^21 induced murine tissue inhibitor of metalloproteinases-1 gene expression. FEBS Journal, 2005, 272, 1912-1926.	4.7	28
72	British Society for Matrix Biology Autumn Meeting †Joint with the UK Tissue & Cell Engineering Society, University of Bristol, UK. International Journal of Experimental Pathology, 2005, 86, A1-A56.	1.3	0

#	ARTICLE	IF	CITATION
73	Oncostatin M in combination with tumour necrosis factor \hat{A} induces a chondrocyte membrane associated aggrecanase that is distinct from ADAMTS aggrecanase-1 or -2. Annals of the Rheumatic Diseases, 2005, 64, 1624-1632.	0.9	36
74	Histone deacetylase inhibitors modulate metalloproteinase gene expression in chondrocytes and block cartilage resorption. Arthritis Research, 2005, 7, R503.	2.0	153
75	Expression profiling of metalloproteinases and their inhibitors in cartilage. Arthritis and Rheumatism, 2004, 50, 131-141.	6.7	379
76	Expression of metalloproteinases and inhibitors in the differentiation of P19CL6 cells into cardiac myocytes. Biochemical and Biophysical Research Communications, 2004, 322, 759-765.	2.1	43
77	The Comparative Role of Activator Protein 1 and Smad Factors in the Regulation of Timp-1 and MMP-1 Gene Expression by Transforming Growth Factor- \hat{l}^21 . Journal of Biological Chemistry, 2003, 278, 10304-10313.	3.4	211
78	Identification of an initiator-like element essential for the expression of the tissue inhibitor of metalloproteinases-4 (Timp-4) gene. Biochemical Journal, 2002, 364, 89-99.	3.7	62
79	An enhancer complex confers both high-level and cell-specific expression of the human type X collagen gene. FEBS Letters, 2002, 531, 505-508.	2.8	15
80	The Human Tissue Inhibitor of Metalloproteinases (TIMP)-1 Gene Contains Repressive Elements within the Promoter and Intron 1. Journal of Biological Chemistry, 2000, 275, 32664-32671.	3.4	34
81	Quantification of Neuroreceptors in the Living Human Brain: III. D2-Like Dopamine Receptors: Theory, Validation, and Changes during Normal Aging. Journal of Cerebral Blood Flow and Metabolism, 1997, 17, 316-330.	4.3	98
82	Reply to Swart and Korf. Journal of Cerebral Blood Flow and Metabolism, 1989, 9, 908-910.	4.3	3