
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5783444/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	MPI8 is Potent against SARS oVâ€2 by Inhibiting Dually and Selectively the SARS oVâ€2 Main Protease and the Host Cathepsin L**. ChemMedChem, 2022, 17, .	1.6	41
2	Drug Repurposing for the SARSâ€CoVâ€⊋ Papain‣ike Protease. ChemMedChem, 2022, 17, .	1.6	29
3	A Reversible Chemogenetic Switch for Chimeric Antigen Receptor Tâ€Cells**. Angewandte Chemie - International Edition, 2022, 61, .	7.2	8
4	The Pyrrolysyl-tRNA Synthetase Activity can be Improved by a P188 Mutation that Stabilizes the Full-Length Enzyme. Journal of Molecular Biology, 2022, 434, 167453.	2.0	9
5	Evaluation of SARS-CoV-2 Main Protease Inhibitors Using a Novel Cell-Based Assay. ACS Central Science, 2022, 8, 192-204.	5.3	30
6	Titelbild: A Reversible Chemogenetic Switch for Chimeric Antigen Receptor Tâ€Cells (Angew. Chem.) Tj ETQq0 0	0 rgBT /O 1.6	verlock 10 T
7	An Enhanced Hybrid Screening Approach to Identify Potent Inhibitors for the SARS-CoV-2 Main Protease From the NCI Compound Library. Frontiers in Chemistry, 2022, 10, 816576.	1.8	6
8	A Designed, Highly Efficient Pyrrolysyl-tRNA Synthetase Mutant Binds o-Chlorophenylalanine Using Two Halogen Bonds. Journal of Molecular Biology, 2022, 434, 167534.	2.0	5
9	Repurposing Halicin as a potent covalent inhibitor for the SARS-CoV-2 main protease. Current Research in Chemical Biology, 2022, 2, 100025.	1.4	6

9	Research in Chemical Biology, 2022, 2, 100025.	1.4	6
10	Accurate Mass Identification of an Interfering Water Adduct and Strategies in Development and Validation of an LC-MS/MS Method for Quantification of MPI8, a Potent SARS-CoV-2 Main Protease Inhibitor, in Rat Plasma in Pharmacokinetic Studies. Pharmaceuticals, 2022, 15, 676.	1.7	1
11	Taf2 mediates DNA binding of Taf14. Nature Communications, 2022, 13, .	5.8	4
12	Evolutionary and Structural Insights about Potential SARS-CoV-2 Evasion of Nirmatrelvir. Journal of Medicinal Chemistry, 2022, 65, 8686-8698.	2.9	63
13	A systematic exploration of boceprevir-based main protease inhibitors as SARS-CoV-2 antivirals. European Journal of Medicinal Chemistry, 2022, 240, 114596.	2.6	24
14	A multi-pronged evaluation of aldehyde-based tripeptidyl main protease inhibitors as SARS-CoV-2 antivirals. European Journal of Medicinal Chemistry, 2022, 240, 114570.	2.6	23
15	A Quick Route to Multiple Highly Potent SARSâ€CoVâ€2 Main Protease Inhibitors**. ChemMedChem, 2021, 16, 942-948.	1.6	92
16	Zinc thiotropolone combinations as inhibitors of the SARS-CoV-2 main protease. Dalton Transactions, 2021, 50, 12226-12233.	1.6	7
17	The Construction of a Genetically Encoded, Phage-Displayed Cyclic-Peptide Library. Methods in Molecular Biology, 2021, 2355, 219-230.	0.4	1
18	Bepridil is potent against SARS-CoV-2 in vitro. Proceedings of the National Academy of Sciences of the	3.3	80

United States of America, 2021, 118, .

#	Article	IF	CITATIONS
19	Site-Specific Conversion of Cysteine in a Protein to Dehydroalanine Using 2-Nitro-5-thiocyanatobenzoic Acid. Molecules, 2021, 26, 2619.	1.7	5
20	Self-Masked Aldehyde Inhibitors: A Novel Strategy for Inhibiting Cysteine Proteases. Journal of Medicinal Chemistry, 2021, 64, 11267-11287.	2.9	19
21	Discovery of Selective Small-Molecule Inhibitors for the ENL YEATS Domain. Journal of Medicinal Chemistry, 2021, 64, 10997-11013.	2.9	20
22	An optimal "Click―formulation strategy for antibody-drug conjugate synthesis. Bioorganic and Medicinal Chemistry, 2020, 28, 115808.	1.4	5
23	The molecular basis of tight nuclear tethering and inactivation of cGAS. Nature, 2020, 587, 673-677.	13.7	139
24	Stepwise Assembly of Turnâ€on Fluorescence Sensors in Multicomponent Metal–Organic Frameworks for inâ€Vitro Cyanide Detection. Angewandte Chemie, 2020, 132, 9405-9409.	1.6	18
25	Expressed Protein Ligation without Intein. Journal of the American Chemical Society, 2020, 142, 7047-7054.	6.6	28
26	Stepwise Assembly of Turnâ€on Fluorescence Sensors in Multicomponent Metal–Organic Frameworks for inâ€Vitro Cyanide Detection. Angewandte Chemie - International Edition, 2020, 59, 9319-9323.	7.2	104
27	An amber obligate active site-directed ligand evolution technique for phage display. Nature Communications, 2020, 11, 1392.	5.8	25
28	Learning from the Past: Possible Urgent Prevention and Treatment Options for Severe Acute Respiratory Infections Caused by 2019â€nCoV. ChemBioChem, 2020, 21, 730-738.	1.3	612
29	Site Specific Lysine Acetylation of Histones for Nucleosome Reconstitution using Genetic Code Expansion in Escherichia coli . Journal of Visualized Experiments, 2020, , .	0.2	1
30	A Genetically Encoded, Phageâ€Displayed Cyclicâ€Peptide Library. Angewandte Chemie - International Edition, 2019, 58, 15904-15909.	7.2	64
31	Histone H3K23-specific acetylation by MORF is coupled to H3K14 acylation. Nature Communications, 2019, 10, 4724.	5.8	56
32	A Genetically Encoded, Phageâ€Displayed Cyclicâ€Peptide Library. Angewandte Chemie, 2019, 131, 16051-16050	5.1.6	9
33	Covalent Inhibition in Drug Discovery. ChemMedChem, 2019, 14, 889-906.	1.6	168
34	Estrogen Improves Insulin Sensitivity and Suppresses Gluconeogenesis via the Transcription Factor Foxo1. Diabetes, 2019, 68, 291-304.	0.3	160
35	A Click Chemistry Approach Reveals the Chromatin-Dependent Histone H3K36 Deacylase Nature of SIRT7. Journal of the American Chemical Society, 2019, 141, 2462-2473.	6.6	49

#	Article	IF	CITATIONS
37	A Lipid Transfer Protein Signaling Axis Exerts Dual Control of Cell-Cycle and Membrane Trafficking Systems. Developmental Cell, 2018, 44, 378-391.e5.	3.1	30
38	Using Amber and Ochre Nonsense Codons to Code Two Different Noncanonical Amino Acids in One Protein Gene. Methods in Molecular Biology, 2018, 1728, 147-154.	0.4	6
39	Incorporation of Nonproteinogenic Amino Acids in Class I and II Lantibiotics. ACS Chemical Biology, 2018, 13, 951-957.	1.6	27
40	Evolving the Nâ€Terminal Domain of Pyrrolysylâ€ŧRNA Synthetase for Improved Incorporation of Noncanonical Amino Acids. ChemBioChem, 2018, 19, 26-30.	1.3	23
41	tRNA ^{Pyl} : Structure, function, and applications. RNA Biology, 2018, 15, 441-452.	1.5	42
42	Structural insights into the π-π-π stacking mechanism and DNA-binding activity of the YEATS domain. Nature Communications, 2018, 9, 4574.	5.8	45
43	Time-Resolved Analysis Reveals Rapid Dynamics and Broad Scope of the CBP/p300 Acetylome. Cell, 2018, 174, 231-244.e12.	13.5	313
44	A strategy for dual inhibition of the proteasome and fatty acid synthase with belactosin C-orlistat hybrids. Bioorganic and Medicinal Chemistry, 2017, 25, 2901-2916.	1.4	14
45	Global Insight into Lysine Acetylation Events and Their Links to Biological Aspects in Beauveria bassiana, a Fungal Insect Pathogen. Scientific Reports, 2017, 7, 44360.	1.6	16
46	Genetically Encoded 2-Aryl-5-carboxytetrazoles for Site-Selective Protein Photo-Cross-Linking. Journal of the American Chemical Society, 2017, 139, 6078-6081.	6.6	60
47	Proteins with Siteâ€Specific Lysine Methylation. Chemistry - A European Journal, 2017, 23, 11732-11737.	1.7	13
48	A Genetically Encoded Allysine for the Synthesis of Proteins with Siteâ€Specific Lysine Dimethylation. Angewandte Chemie - International Edition, 2017, 56, 212-216.	7.2	38
49	A Genetically Encoded Allysine for the Synthesis of Proteins with Siteâ€5pecific Lysine Dimethylation. Angewandte Chemie, 2017, 129, 218-222.	1.6	10
50	A Versatile Approach for Site‧pecific Lysine Acylation in Proteins. Angewandte Chemie, 2017, 129, 1665-1669.	1.6	10
51	A Versatile Approach for Siteâ€Specific Lysine Acylation in Proteins. Angewandte Chemie - International Edition, 2017, 56, 1643-1647.	7.2	61
52	Frontispiece: Proteins with Site‧pecific Lysine Methylation. Chemistry - A European Journal, 2017, 23, .	1.7	0
53	Synthetases pick up the PACE. Nature Chemical Biology, 2017, 13, 1205-1206.	3.9	1
54	The "ï€â€€lamp―Offers a New Strategy for Site‧elective Protein Modification. ChemBioChem, 2016, 17, 883-885.	1.3	5

#	Article	IF	CITATIONS
55	Phosphaâ€Michael Addition as a New Click Reaction for Protein Functionalization. ChemBioChem, 2016, 17, 456-461.	1.3	30
56	A Chemical Biology Approach to Reveal Sirt6-targeted Histone H3 Sites in Nucleosomes. ACS Chemical Biology, 2016, 11, 1973-1981.	1.6	78
57	Genetically encoded fluorophenylalanines enable insights into the recognition of lysine trimethylation by an epigenetic reader. Chemical Communications, 2016, 52, 12606-12609.	2.2	23
58	Probing the Catalytic Charge-Relay System in Alanine Racemase with Genetically Encoded Histidine Mimetics. ACS Chemical Biology, 2016, 11, 3305-3309.	1.6	17
59	Sirtuins 1 and 2 Are Universal Histone Deacetylases. ACS Chemical Biology, 2016, 11, 792-799.	1.6	41
60	Improving the bioactivity of rHirudin with boronophenylalanine site-specific modification. Molecular Medicine Reports, 2015, 11, 3774-3779.	1.1	2
61	Facile Removal of Leader Peptides from Lanthipeptides by Incorporation of a Hydroxy Acid. Journal of the American Chemical Society, 2015, 137, 6975-6978.	6.6	40
62	Fluorinated Aromatic Amino Acids Distinguish Cation-Ï€ Interactions from Membrane Insertion. Journal of Biological Chemistry, 2015, 290, 19334-19342.	1.6	21
63	A click chemistry approach to site-specific immobilization of a small laccase enables efficient direct electron transfer in a biocathode. Chemical Communications, 2015, 51, 2522-2525.	2.2	41
64	Expanding the chemical diversity of lasso peptide MccJ25 with genetically encoded noncanonical amino acids. Chemical Communications, 2015, 51, 409-412.	2.2	58
65	The genetic incorporation of thirteen novel non-canonical amino acids. Chemical Communications, 2014, 50, 2673-2675.	2.2	28
66	E1 atalyzed Ubiquitin Câ€Terminal Amidation for the Facile Synthesis of Deubiquitinase Substrates. ChemBioChem, 2014, 15, 37-41.	1.3	13
67	Pyrrolysyl-tRNA synthetase: An ordinary enzyme but an outstanding genetic code expansion tool. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2014, 1844, 1059-1070.	1.1	327
68	The nitrilimine–alkene cycloaddition is an ultra rapid click reaction. Chemical Communications, 2014, 50, 3176-3179.	2.2	41
69	A genetically encoded aldehyde for rapid protein labelling. Chemical Communications, 2014, 50, 7424-7426.	2.2	31
70	Genetically encoded unstrained olefins for live cell labeling with tetrazine dyes. Chemical Communications, 2014, 50, 13085-13088.	2.2	47
71	Towards Reassigning the Rare AGG Codon in <i>Escherichia coli</i> . ChemBioChem, 2014, 15, 1750-1754.	1.3	41
72	Two Rapid Catalyst-Free Click Reactions for In Vivo Protein Labeling of Genetically Encoded Strained Alkene/Alkyne Functionalities. Bioconjugate Chemistry, 2014, 25, 1730-1738.	1.8	59

#	Article	IF	CITATIONS
73	Genetic Incorporation of Seven <i>ortho</i> -Substituted Phenylalanine Derivatives. ACS Chemical Biology, 2014, 9, 884-890.	1.6	37
74	Effects of End-Group Termination on Salting-Out Constants for Triglycine. Journal of Physical Chemistry Letters, 2013, 4, 4069-4073.	2.1	20
75	A Genetically Encoded Acrylamide Functionality. ACS Chemical Biology, 2013, 8, 1664-1670.	1.6	94
76	Reversal of the Hofmeister Series: Specific Ion Effects on Peptides. Journal of Physical Chemistry B, 2013, 117, 8150-8158.	1.2	169
77	Genetic Incorporation of Twelve <i>meta</i> -Substituted Phenylalanine Derivatives Using a Single Pyrrolysyl-tRNA Synthetase Mutant. ACS Chemical Biology, 2013, 8, 405-415.	1.6	74
78	Nonsense and Sense Suppression Abilities of Original and Derivative Methanosarcina mazei Pyrrolysyl-tRNA Synthetase-tRNAPyl Pairs in the Escherichia coli BL21(DE3) Cell Strain. PLoS ONE, 2013, 8, e57035.	1.1	39
79	Nearâ€cognate suppression of amber, opal and quadruplet codons competes with aminoacylâ€tRNA ^{Pyl} for genetic code expansion. FEBS Letters, 2012, 586, 3931-3937.	1.3	70
80	A Rationally Designed Pyrrolysyl-tRNA Synthetase Mutant with a Broad Substrate Spectrum. Journal of the American Chemical Society, 2012, 134, 2950-2953.	6.6	124
81	A Facile Method to Synthesize Histones with Posttranslational Modification Mimics. Biochemistry, 2012, 51, 5232-5234.	1.2	40
82	Catalystâ€Free and Siteâ€Specific Oneâ€Pot Dual‣abeling of a Protein Directed by Two Genetically Incorporated Noncanonical Amino Acids. ChemBioChem, 2012, 13, 1405-1408.	1.3	64
83	The de novo engineering of pyrrolysyl-tRNA synthetase for genetic incorporation of l-phenylalanine and its derivatives. Molecular BioSystems, 2011, 7, 714.	2.9	76
84	Synthesis of proteins with defined posttranslational modifications using the genetic noncanonical amino acid incorporation approach. Molecular BioSystems, 2011, 7, 38-47.	2.9	40
85	Proteome-Wide Mapping of the <i>Drosophila</i> Acetylome Demonstrates a High Degree of Conservation of Lysine Acetylation. Science Signaling, 2011, 4, ra48.	1.6	243
86	A Facile System for Genetic Incorporation of Two Different Noncanonical Amino Acids into One Protein in <i>Escherichia coli</i> . Angewandte Chemie - International Edition, 2010, 49, 3211-3214.	7.2	189
87	Genetic incorporation of an aliphatic keto-containing amino acid into proteins for their site-specific modifications. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 878-880.	1.0	56
88	A genetically encoded photocaged Nε-methyl-l-lysine. Molecular BioSystems, 2010, 6, 1557.	2.9	72
89	A convenient method for genetic incorporation of multiple noncanonical amino acids into one protein in Escherichia coli. Molecular BioSystems, 2010, 6, 683.	2.9	56
90	A Genetically Encoded Boronateâ€Containing Amino Acid. Angewandte Chemie - International Edition, 2008. 47. 8220-8223.	7.2	149

#	Article	IF	CITATIONS
91	Selecting Folded Proteins from a Library of Secondary Structural Elements. Journal of the American Chemical Society, 2008, 130, 176-185.	6.6	17
92	Crystal Structure of a Biosynthetic Sulfo-hirudin Complexed to Thrombin. Journal of the American Chemical Society, 2007, 129, 10648-10649.	6.6	59
93	A Genetically Encoded Diazirine Photocrosslinker in <i>Escherichia coli</i> . ChemBioChem, 2007, 8, 2210-2214.	1.3	89
94	Structural Basis for the Recognition of <i>para</i> â€Benzoylâ€ <scp>L</scp> â€phenylalanine by Evolved Aminoacylâ€ŧRNA Synthetases. Angewandte Chemie - International Edition, 2007, 46, 6073-6075.	7.2	26
95	A Genetically Encoded Bidentate, Metalâ€Binding Amino Acid. Angewandte Chemie - International Edition, 2007, 46, 9239-9242.	7.2	134
96	Genetic incorporation of unnatural amino acids into proteins in mammalian cells. Nature Methods, 2007, 4, 239-244.	9.0	358
97	Kinetic and Crystallographic Analysis of Active Site Mutants ofEscherichia coliγ-Aminobutyrate Aminotransferaseâ€. Biochemistry, 2005, 44, 2982-2992.	1.2	45
98	Role of Q52 in Catalysis of Decarboxylation and Transamination in Dialkylglycine Decarboxylaseâ€. Biochemistry, 2005, 44, 16392-16404.	1.2	33
99	Kinetic and Thermodynamic Analysis of the Interaction of Cations with Dialkylglycine Decarboxylase. Biochemistry, 2004, 43, 4998-5010.	1.2	7
100	Crystal Structures of Unbound and Aminooxyacetate-BoundEscherichia coliγ-Aminobutyrate Aminotransferaseâ€. Biochemistry, 2004, 43, 10896-10905.	1.2	65
101	Aminophosphonate Inhibitors of Dialkylglycine Decarboxylase:Â Structural Basis for Slow Binding Inhibitionâ€,‡. Biochemistry, 2002, 41, 12320-12328.	1.2	79
102	A Recurring Chemogenetic Switch for Chimeric Antigen Receptor T Cells. Angewandte Chemie, 0, , .	1.6	0