Cornelis Dullemond

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5783414/publications.pdf Version: 2024-02-01

		5896	11052
208	20,239	81	137
papers	citations	h-index	g-index
211	211	211	5049
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The Disk Substructures at High Angular Resolution Project (DSHARP). I. Motivation, Sample, Calibration, and Overview. Astrophysical Journal Letters, 2018, 869, L41.	8.3	732
2	Passive Irradiated Circumstellar Disks with an Inner Hole. Astrophysical Journal, 2001, 560, 957-969.	4.5	603
3	Dust coagulation in protoplanetary disks: A rapid depletion ofÂsmallÂgrains. Astronomy and Astrophysics, 2005, 434, 971-986.	5.1	552
4	PROTOPLANETARY DISK STRUCTURES IN OPHIUCHUS. Astrophysical Journal, 2009, 700, 1502-1523.	4.5	542
5	RESOLVED IMAGES OF LARGE CAVITIES IN PROTOPLANETARY TRANSITION DISKS. Astrophysical Journal, 2011, 732, 42.	4.5	538
6	Coagulation, fragmentation and radial motion of solid particles in protoplanetary disks. Astronomy and Astrophysics, 2008, 480, 859-877.	5.1	502
7	A Major Asymmetric Dust Trap in a Transition Disk. Science, 2013, 340, 1199-1202.	12.6	492
8	Gas- and dust evolution in protoplanetary disks. Astronomy and Astrophysics, 2010, 513, A79.	5.1	468
9	The outcome of protoplanetary dust growth: pebbles, boulders, or planetesimals?. Astronomy and Astrophysics, 2010, 513, A57.	5.1	415
10	Flaring vs.Âself-shadowed disks: The SEDs of Herbig Ae/Be stars. Astronomy and Astrophysics, 2004, 417, 159-168.	5.1	391
11	The outcome of protoplanetary dust growth: pebbles, boulders, or planetesimals?. Astronomy and Astrophysics, 2010, 513, A56.	5.1	384
12	The effect of dust settling on the appearance of protoplanetary disks. Astronomy and Astrophysics, 2004, 421, 1075-1086.	5.1	359
13	PROTOPLANETARY DISK STRUCTURES IN OPHIUCHUS. II. EXTENSION TO FAINTER SOURCES. Astrophysical Journal, 2010, 723, 1241-1254.	4.5	332
14	The Disk Substructures at High Angular Resolution Project (DSHARP). II. Characteristics of Annular Substructures. Astrophysical Journal Letters, 2018, 869, L42.	8.3	326
15	Trapping dust particles in the outer regions of protoplanetary disks. Astronomy and Astrophysics, 2012, 538, A114.	5.1	298
16	The Disk Substructures at High Angular Resolution Project (DSHARP). VII. The Planet–Disk Interactions Interpretation. Astrophysical Journal Letters, 2018, 869, L47.	8.3	289
17	Spiral density waves in a young protoplanetary disk. Science, 2016, 353, 1519-1521.	12.6	251
18	The Disk Substructures at High Angular Resolution Project (DSHARP). VI. Dust Trapping in Thin-ringed Protoplanetary Disks. Astrophysical Journal Letters, 2018, 869, L46.	8.3	250

#	Article	IF	CITATIONS
19	Benchmark problems for continuum radiative transfer. Astronomy and Astrophysics, 2009, 498, 967-980.	5.1	230
20	TIME EVOLUTION OF VISCOUS CIRCUMSTELLAR DISKS DUE TO PHOTOEVAPORATION BY FAR-ULTRAVIOLET, EXTREME-ULTRAVIOLET, AND X-RAY RADIATION FROM THE CENTRAL STAR. Astrophysical Journal, 2009, 705, 1237-1251.	4.5	216
21	c2dSpitzerIRS Spectra of Disks around T Tauri Stars. I. Silicate Emission and Grain Growth. Astrophysical Journal, 2006, 639, 275-291.	4.5	206
22	EVIDENCE FOR DUST CLEARING THROUGH RESOLVED SUBMILLIMETER IMAGING. Astrophysical Journal, 2009, 704, 496-502.	4.5	202
23	The Disk Substructures at High Angular Resolution Project (DSHARP). V. Interpreting ALMA Maps of Protoplanetary Disks in Terms of a Dust Model. Astrophysical Journal Letters, 2018, 869, L45.	8.3	199
24	Dust size distributions in coagulation/fragmentation equilibrium: numerical solutions and analytical fits. Astronomy and Astrophysics, 2011, 525, A11.	5.1	197
25	MILLIMETER-WAVE POLARIZATION OF PROTOPLANETARY DISKS DUE TO DUST SCATTERING. Astrophysical Journal, 2015, 809, 78.	4.5	197
26	CONSTRAINTS ON THE RADIAL VARIATION OF GRAIN GROWTH IN THE AS 209 CIRCUMSTELLAR DISK. Astrophysical Journal Letters, 2012, 760, L17.	8.3	192
27	Modelling CO emission - I. CO as a column density tracer and the X factor in molecular clouds. Monthly Notices of the Royal Astronomical Society, 2011, 412, 1686-1700.	4.4	184
28	The chemical history of molecules in circumstellar disks. Astronomy and Astrophysics, 2009, 495, 881-897.	5.1	179
29	The Onset of Planet Formation in Brown Dwarf Disks. Science, 2005, 310, 834-836.	12.6	177
30	Radiative transfer in very optically thick circumstellar disks. Astronomy and Astrophysics, 2009, 497, 155-166.	5.1	174
31	Mid-infrared sizes of circumstellar disks around Herbig Ae/Be stars measured with MIDI on the VLTI. Astronomy and Astrophysics, 2004, 423, 537-548.	5.1	172
32	Planetesimal formation by sweep-up: how the bouncing barrier can be beneficial to growth. Astronomy and Astrophysics, 2012, 540, A73.	5.1	169
33	Cold Disks: <i>Spitzer</i> Spectroscopy of Disks around Young Stars with Large Gaps. Astrophysical Journal, 2007, 664, L107-L110.	4.5	168
34	Possible planet-forming regions on submillimetre images. Monthly Notices of the Royal Astronomical Society, 2012, 419, 1701-1712.	4.4	165
35	The Gas Temperature in the Surface Layers of Protoplanetary Disks. Astrophysical Journal, 2004, 615, 991-999.	4.5	161
36	EVOLUTIONARY SIGNATURES IN THE FORMATION OF LOW-MASS PROTOSTARS. II. TOWARD RECONCILING MODELS AND OBSERVATIONS. Astrophysical Journal, 2010, 710, 470-502.	4.5	152

#	Article	IF	CITATIONS
37	One Solution to the Mass Budget Problem for Planet Formation: Optically Thick Disks with Dust Scattering. Astrophysical Journal Letters, 2019, 877, L18.	8.3	150
38	Multiwavelength analysis for interferometric (sub-)mm observations of protoplanetary disks. Astronomy and Astrophysics, 2016, 588, A53.	5.1	148
39	Shadows and spirals in the protoplanetary disk HDâ \in ‰100453. Astronomy and Astrophysics, 2017, 597, A42.	5.1	147
40	A "Starless―Core that Isn't: Detection of a Source in the L1014 Dense Core with the Spitzer Space Telescope. Astrophysical Journal, Supplement Series, 2004, 154, 396-401.	7.7	146
41	Grain growth in the inner regions of Herbig Ae/Be star disks. Astronomy and Astrophysics, 2003, 400, L21-L24.	5.1	145
42	C2D Spitzer-IRS spectra of disks around T Tauri stars. Astronomy and Astrophysics, 2006, 459, 545-556.	5.1	138
43	[O I] 6300Âà emission in Herbig Ae/Be systems: Signature of Keplerian rotation. Astronomy and Astrophysics, 2005, 436, 209-230.	5.1	135
44	Breaking through: The effects of a velocity distribution on barriers to dust growth. Astronomy and Astrophysics, 2012, 544, L16.	5.1	135
45	High-Resolution Spectroscopy in Tr 37: Gas Accretion Evolution in Evolved Dusty Disks. Astronomical Journal, 2006, 132, 2135-2155.	4.7	131
46	Modelling CO emission - II. The physical characteristics that determine theâ€,Xâ€,factor in Galactic molecular clouds. Monthly Notices of the Royal Astronomical Society, 2011, 415, 3253-3274.	4.4	129
47	THE IMPACT OF DUST EVOLUTION AND PHOTOEVAPORATION ON DISK DISPERSAL. Astrophysical Journal, 2015, 804, 29.	4.5	128
48	lces in the Edgeâ€on Disk CRBR 2422.8â€3423:SpitzerSpectroscopy and Monte Carlo Radiative Transfer Modeling. Astrophysical Journal, 2005, 622, 463-481.	4.5	126
49	Episodic formation of cometary material in the outburst of a young Sun-like star. Nature, 2009, 459, 224-226.	27.8	124
50	Dust retention in protoplanetary disks. Astronomy and Astrophysics, 2009, 503, L5-L8.	5.1	123
51	Vertical structure models of T Tauri and Herbig Ae/Be disks. Astronomy and Astrophysics, 2002, 389, 464-474.	5.1	123
52	Planetesimal formation near the snow line in MRI-driven turbulent protoplanetary disks. Astronomy and Astrophysics, 2008, 487, L1-L4.	5.1	122
53	The Disk Substructures at High Angular Resolution Project (DSHARP). III. Spiral Structures in the Millimeter Continuum of the Elias 27, IM Lup, and WaOph 6 Disks. Astrophysical Journal Letters, 2018, 869, L43.	8.3	121
54	Lopsided dust rings in transition disks. Astronomy and Astrophysics, 2013, 550, L8.	5.1	120

#	Article	IF	CITATIONS
55	Understanding the spectra of isolated Herbig stars in the frame of a passive disk model. Astronomy and Astrophysics, 2003, 398, 607-619.	5.1	120
56	Measuring the Fraction of Obscured Quasars by the Infrared Luminosity of Unobscured Quasars. Astrophysical Journal, 2008, 679, 140-148.	4.5	119
57	The Disk Substructures at High Angular Resolution Project (DSHARP). IX. A High-definition Study of the HD 163296 Planet-forming Disk. Astrophysical Journal Letters, 2018, 869, L49.	8.3	114
58	Hot Organic Molecules toward a Young Low-Mass Star: A Look at Inner Disk Chemistry. Astrophysical Journal, 2006, 636, L145-L148.	4.5	112
59	Survival of the mm-cm size grain population observed in protoplanetary disks. Astronomy and Astrophysics, 2007, 469, 1169-1182.	5.1	107
60	Numerical methods for non-LTE line radiative transfer: Performance and convergence characteristics. Astronomy and Astrophysics, 2002, 395, 373-384.	5.1	104
61	Spitzer Space Telescope Spectroscopy of Ices toward Lowâ€Mass Embedded Protostars. Astrophysical Journal, Supplement Series, 2004, 154, 359-362.	7.7	104
62	UNDERSTANDING SPATIAL AND SPECTRAL MORPHOLOGIES OF ULTRACOMPACT H II REGIONS. Astrophysical Journal, 2010, 719, 831-843.	4.5	103
63	Explaining UX Orionis Star Variability with Self-shadowed Disks. Astrophysical Journal, 2003, 594, L47-L50.	4.5	102
64	GRAIN GROWTH IN THE CIRCUMSTELLAR DISKS OF THE YOUNG STARS CY Tau AND DoAr 25. Astrophysical Journal, 2015, 813, 41.	4.5	100
65	Can dust coagulation trigger streaming instability?. Astronomy and Astrophysics, 2014, 572, A78.	5.1	99
66	The 2D continuum radiative transfer problem. Astronomy and Astrophysics, 2004, 417, 793-805.	5.1	98
67	RADIATIVE TRANSFER MODELS OF MID-INFRARED H ₂ 0 LINES IN THE PLANET-FORMING REGION OF CIRCUMSTELLAR DISKS. Astrophysical Journal, 2009, 704, 1471-1481.	4.5	97
68	Clumpy tori around active galactic nuclei. Astronomy and Astrophysics, 2005, 436, 47-56.	5.1	96
69	Asymmetric transition disks: Vorticity or eccentricity?. Astronomy and Astrophysics, 2013, 553, L3.	5.1	96
70	Testing the theory of grain growth and fragmentation by millimeter observations of protoplanetary disks. Astronomy and Astrophysics, 2010, 516, L14.	5.1	95
71	TheSpitzerc2d Survey of Nearby Dense Cores. I. First Direct Detection of the Embedded Source in IRAM 04191+1522. Astrophysical Journal, 2006, 651, 945-959.	4.5	92
72	Characterizing the nature of embedded young stellar objects through silicate, ice and millimeter observations. Astronomy and Astrophysics, 2008, 486, 245-254.	5.1	89

#	Article	IF	CITATIONS
73	C2D Spitzer-IRS spectra of disks around T Tauri stars. Astronomy and Astrophysics, 2009, 507, 327-345.	5.1	88
74	SUBMILLIMETER POLARIZATION OBSERVATION OF THE PROTOPLANETARY DISK AROUND HD 142527. Astrophysical Journal Letters, 2016, 831, L12.	8.3	88
75	GRAIN SIZE CONSTRAINTS ON HL TAU WITH POLARIZATION SIGNATURE. Astrophysical Journal, 2016, 820, 54.	4.5	86
76	The Disk Substructures at High Angular Resolution Project (DSHARP). IV. Characterizing Substructures and Interactions in Disks around Multiple Star Systems. Astrophysical Journal Letters, 2018, 869, L44.	8.3	86
77	High spatial resolution mid-infrared observations of the low-mass young star TW Hydrae. Astronomy and Astrophysics, 2007, 471, 173-185.	5.1	85
78	Spiral arms in scattered light images of protoplanetary discs: are they the signposts of planets?. Monthly Notices of the Royal Astronomical Society, 2015, 451, 1147-1157.	4.4	84
79	Accretion in Protoplanetary Disks: The Imprint of Core Properties. Astrophysical Journal, 2006, 645, L69-L72.	4.5	83
80	KINEMATICS OF THE CO GAS IN THE INNER REGIONS OF THE TW Hya DISK. Astrophysical Journal, 2012, 757, 129.	4.5	83
81	PAH chemistry and IR emission from circumstellar disks. Astronomy and Astrophysics, 2007, 466, 229-241.	5.1	82
82	A representative particle approach to coagulation and fragmentation of dust aggregates and fluid droplets. Astronomy and Astrophysics, 2008, 489, 931-941.	5.1	81
83	LkHα 330: Evidence for Dust Clearing through Resolved Submillimeter Imaging. Astrophysical Journal, 2008, 675, L109-L112.	4.5	80
84	Impact splash chondrule formation during planetesimal recycling. Icarus, 2018, 302, 27-43.	2.5	79
85	TRUNCATED DISKS IN TW Hya ASSOCIATION MULTIPLE STAR SYSTEMS. Astrophysical Journal, 2010, 710, 462-469.	4.5	78
86	Scattered light images of spiral arms in marginally gravitationally unstable discs with an embedded planet. Monthly Notices of the Royal Astronomical Society, 2015, 453, 1768-1778.	4.4	76
87	The 2-D structure of dusty disks around Herbig Ae/Be stars. Astronomy and Astrophysics, 2002, 395, 853-862.	5.1	76
88	Correlation between grain growth and disk geometry in Herbig Ae/Be systems. Astronomy and Astrophysics, 2004, 422, 621-626.	5.1	76
89	The pre-main sequence spectroscopic binary AK Scorpii revisited. Astronomy and Astrophysics, 2003, 409, 1037-1053.	5.1	71
90	Shadows and asymmetries in the T Tauri disk HD 143006: evidence for a misaligned inner disk. Astronomy and Astrophysics, 2018, 619, A171.	5.1	71

#	Article	IF	CITATIONS
91	The First Detailed Look at a Brown Dwarf Disk. Astrophysical Journal, 2003, 590, L111-L114.	4.5	69
92	The Disk Substructures at High Angular Resolution Project (DSHARP). X. Multiple Rings, a Misaligned Inner Disk, and a Bright Arc in the Disk around the T Tauri star HD 143006. Astrophysical Journal Letters, 2018, 869, L50.	8.3	69
93	The outcome of protoplanetary dust growth: pebbles, boulders, or planetesimals?. Astronomy and Astrophysics, 2011, 534, A73.	5.1	68
94	Inner Rim of a Molecular Disk Spatially Resolved in Infrared CO Emission Lines. Astrophysical Journal, 2006, 652, 758-762.	4.5	66
95	Evolution of young brown dwarf disks in the mid-infrared. Astronomy and Astrophysics, 2004, 427, 245-250.	5.1	63
96	A NEW CONDITION FOR THE TRANSITION FROM RUNAWAY TO OLIGARCHIC GROWTH. Astrophysical Journal Letters, 2010, 714, L103-L107.	8.3	62
97	Spatially and spectrally resolved 10Âμm emission in Herbig Ae/Be stars. Astronomy and Astrophysics, 2004, 418, 177-184.	5.1	61
98	Chemistry and line emission from evolving Herbig Ae disks. Astronomy and Astrophysics, 2007, 463, 203-216.	5.1	61
99	Spatial separation of small and large grains in the transitional disk around the young star IRS 48. Astronomy and Astrophysics, 2007, 469, L35-L38.	5.1	61
100	Spiral arms in the protoplanetary disc HD100453 detected with ALMA: evidence for binary–disc interaction and a vertical temperature gradient. Monthly Notices of the Royal Astronomical Society, 2020, 491, 1335-1347.	4.4	60
101	FORMATION OF PLANETARY CORES AT TYPE I MIGRATION TRAPS. Astrophysical Journal Letters, 2011, 728, L9.	8.3	58
102	The Disk Substructures at High Angular Resolution Program (DSHARP). VIII. The Rich Ringed Substructures in the AS 209 Disk. Astrophysical Journal Letters, 2018, 869, L48.	8.3	58
103	IMPACT OF GRAIN EVOLUTION ON THE CHEMICAL STRUCTURE OF PROTOPLANETARY DISKS. Astrophysical Journal, 2011, 727, 76.	4.5	57
104	Planetesimal formation via sweep-up growth at the inner edge of dead zones. Astronomy and Astrophysics, 2013, 556, A37.	5.1	57
105	Planetesimal formation during protoplanetary disk buildup. Astronomy and Astrophysics, 2018, 614, A62.	5.1	57
106	The DSHARP Rings: Evidence of Ongoing Planetesimal Formation?. Astrophysical Journal Letters, 2019, 884, L5.	8.3	57
107	An Ideal Testbed for Planet–Disk Interaction: Two Giant Protoplanets in Resonance Shaping the PDS 70 Protoplanetary Disk. Astrophysical Journal Letters, 2019, 884, L41.	8.3	57
108	Probing Protoplanetary Disks with Silicate Emission: Where Is the Silicate Emission Zone?. Astrophysical Journal, 2007, 659, 680-684.	4.5	56

#	Article	IF	CITATIONS
109	Crystalline Silicates as a Probe of Disk Formation History. Astrophysical Journal, 2006, 640, L67-L70.	4.5	54
110	Explaining millimeter-sized particles in brown dwarf disks. Astronomy and Astrophysics, 2013, 554, A95.	5.1	54
111	A Multifrequency ALMA Characterization of Substructures in the GM Aur Protoplanetary Disk. Astrophysical Journal, 2020, 891, 48.	4.5	54
112	THE 2008 OUTBURST OF EX Lup—SILICATE CRYSTALS IN MOTION. Astrophysical Journal, 2012, 744, 118.	4.5	52
113	Millimetre spectral indices of transition disks and their relation to the cavity radius. Astronomy and Astrophysics, 2014, 564, A51.	5.1	51
114	Dust-driven viscous ring-instability in protoplanetary disks. Astronomy and Astrophysics, 2018, 609, A50.	5.1	49
115	The efficiency of dust trapping in ringed protoplanetary discs. Monthly Notices of the Royal Astronomical Society, 2020, 495, 173-181.	4.4	49
116	Efficiency of thermal relaxation by radiative processes in protoplanetary discs: constraints on hydrodynamic turbulence. Astronomy and Astrophysics, 2017, 605, A30.	5.1	47
117	New radiative transfer models for obscuring tori in active galaxies. Astronomy and Astrophysics, 2003, 404, 1-19.	5.1	47
118	A tunnel and a traffic jam: How transition disks maintain a detectable warm dust component despite the presence of a large planet-carved gap. Astronomy and Astrophysics, 2016, 585, A35.	5.1	46
119	Cloudlet capture by transitional disk and FU Orionis stars. Astronomy and Astrophysics, 2019, 628, A20.	5.1	44
120	Grain growth and dust settling in a brown dwarf disk. Astronomy and Astrophysics, 2004, 426, L53-L57.	5.1	43
121	Midplane temperature and outer edge of the protoplanetary disk around HD 163296. Astronomy and Astrophysics, 2020, 633, A137.	5.1	43
122	The dust disk of HR 4049. Astronomy and Astrophysics, 2003, 397, 595-609.	5.1	42
123	Observability of forming planets and their circumplanetary discs II. – SEDs and near-infrared fluxes. Monthly Notices of the Royal Astronomical Society, 2019, 487, 1248-1258.	4.4	41
124	Equilibrium initialization and stability of three-dimensional gas discs. Monthly Notices of the Royal Astronomical Society, 2010, 407, 705-720.	4.4	40
125	NEAR-INFRARED SPECTROSCOPY OF EX Lupi IN OUTBURST. Astrophysical Journal, 2011, 736, 72.	4.5	39
126	A search for mid-infrared molecular hydrogen emission from protoplanetary disks. Astronomy and Astrophysics, 2008, 477, 839-852.	5.1	39

#	Article	IF	CITATIONS
127	Dust, Ice, and Gas In Time (DIGIT) <i>Herschel</i> program first results. Astronomy and Astrophysics, 2010, 518, L128.	5.1	38
128	Investigating dust trapping in transition disks with millimeter-wave polarization. Astronomy and Astrophysics, 2016, 593, A12.	5.1	38
129	The effect of scattering on the structure and SED of protoplanetary disks. Astronomy and Astrophysics, 2003, 408, 161-169.	5.1	38
130	ModelingSpitzerObservations of VV Ser. I. The Circumstellar Disk of a UX Orionis Star. Astrophysical Journal, 2007, 656, 980-990.	4.5	38
131	Dust sedimentation in protoplanetary disks with polycyclic aromatic hydrocarbons. Astronomy and Astrophysics, 2007, 473, 457-466.	5.1	37
132	Modeling dust growth in protoplanetary disks: The breakthrough case. Astronomy and Astrophysics, 2014, 567, A38.	5.1	37
133	X-ray spectra from protons illuminating a neutron star. Astronomy and Astrophysics, 2001, 377, 955-963.	5.1	37
134	Protostellar Holes: Spitzer Space Telescope Observations of the Protostellar Binary IRAS 16293-2422. Astrophysical Journal, 2005, 631, L77-L80.	4.5	36
135	HERBIG STARS' NEAR-INFRARED EXCESS: AN ORIGIN IN THE PROTOSTELLAR DISK'S MAGNETICALLY SUPPORTED ATMOSPHERE. Astrophysical Journal, 2014, 780, 42.	4.5	36
136	Mid-infrared imaging of the circumstellar dust around three Herbig Ae stars: HDÂ135344, CQÂTau, and HDÂ163296. Astronomy and Astrophysics, 2006, 460, 117-124.	5.1	36
137	Lack of PAH emission toward low-mass embedded young stellar objects. Astronomy and Astrophysics, 2009, 495, 837-846.	5.1	36
138	MID-INFRARED SPECTRAL VARIABILITY ATLAS OF YOUNG STELLAR OBJECTS. Astrophysical Journal, Supplement Series, 2012, 201, 11.	7.7	35
139	Molecular hydrogen in the circumstellar environments of Herbig Ae/Be stars probed by FUSE. Astronomy and Astrophysics, 2008, 484, 225-239.	5.1	34
140	A NEW RAYTRACER FOR MODELING AU-SCALE IMAGING OF LINES FROM PROTOPLANETARY DISKS. Astrophysical Journal, 2009, 704, 1482-1494.	4.5	34
141	The first stages of planet formation in binary systems: how far can dust coagulation proceed?. Astronomy and Astrophysics, 2011, 527, A10.	5.1	33
142	Late encounter events as source of disks and spiral structures. Astronomy and Astrophysics, 2020, 633, A3.	5.1	32
143	A submillimeter exponential disk in MÂ51: Evidence for an extended cold dust disk. Astronomy and Astrophysics, 2005, 430, 427-434.	5.1	32
144	Flaring and self-shadowed disks around Herbig Ae stars: simulations for 10Âμm interferometers. Astronomy and Astrophysics, 2005, 441, 563-571.	5.1	32

9

#	Article	IF	CITATIONS
145	Dust coagulation in protoplanetary disks. , 2006, , 112-128.		30
146	Mean gas opacity for circumstellar environments and equilibrium temperature degeneracy. Astronomy and Astrophysics, 2014, 568, A91.	5.1	30
147	Size-sorting dust grains in the surface layers of protoplanetary disks. Astronomy and Astrophysics, 2008, 487, 205-209.	5.1	30
148	Abundant Crystalline Silicates in the Disk of a Very Low Mass Star. Astrophysical Journal, 2007, 661, 361-367.	4.5	30
149	Long-term infrared variability of the UX Ori-type star SV Cep. Monthly Notices of the Royal Astronomical Society, 2007, 374, 1242-1252.	4.4	29
150	FUNDAMENTAL VIBRATIONAL TRANSITION OF CO DURING THE OUTBURST OF EX LUPI IN 2008 [,] . Astrophysical Journal, 2011, 728, 5.	4.5	29
151	Projection of circumstellar disks on their environments. Astronomy and Astrophysics, 2005, 435, 595-610.	5.1	28
152	Sub-Keplerian accretion onto circumstellar disks. Astronomy and Astrophysics, 2010, 519, A28.	5.1	28
153	DUST PROPERTIES AND DISK STRUCTURE OF EVOLVED PROTOPLANETARY DISKS IN Cep OB2: GRAIN GROWTH, SETTLING, GAS AND DUST MASS, AND INSIDE-OUT EVOLUTION. Astrophysical Journal, 2011, 742, 39.	4.5	28
154	RESOLVED MULTIFREQUENCY RADIO OBSERVATIONS OF GG Tau. Astrophysical Journal, 2014, 787, 148.	4.5	28
155	Detectability of giant planets in protoplanetary disks by CO emission lines. Astronomy and Astrophysics, 2010, 523, A69.	5.1	27
156	The Millimeter Continuum Size–Frequency Relationship in the UZ Tau E Disk. Astrophysical Journal, 2018, 861, 64.	4.5	27
157	STELLAR-MASS-DEPENDENT DISK STRUCTURE IN COEVAL PLANET-FORMING DISKS. Astrophysical Journal, 2010, 720, 1668-1673.	4.5	26
158	Spectral signatures of disk eccentricity in young binary systems. Astronomy and Astrophysics, 2011, 528, A93.	5.1	26
159	Coagulation of small grains in disks: the influence of residual infall and initial small-grain content. Astronomy and Astrophysics, 2008, 491, 663-670.	5.1	26
160	Understanding hydrogen recombination line observations with ALMA and EVLA. Monthly Notices of the Royal Astronomical Society, 2012, 425, 2352-2368.	4.4	24
161	Effect of wind-driven accretion on planetary migration. Astronomy and Astrophysics, 2020, 633, A4.	5.1	24
162	DO WE REALLY KNOW THE DUST? SYSTEMATICS AND UNCERTAINTIES OF THE MID-INFRARED SPECTRAL ANALYSIS METHODS. Astrophysical Journal, 2009, 695, 1024-1041.	4.5	23

#	Article	IF	CITATIONS
163	ModelingSpitzerObservations of VV Ser. II. An Extended Quantumâ€heated Nebula and a Disk Shadow. Astrophysical Journal, 2007, 656, 991-1000.	4.5	22
164	The impact of planet wakes on the location and shape of the water ice line in a protoplanetary disk. Astronomy and Astrophysics, 2020, 633, A29.	5.1	22
165	Misaligned disks induced by infall. Astronomy and Astrophysics, 2021, 656, A161.	5.1	22
166	A parameter study of self-consistent disk models around HerbigÂAeBeÂstars. Astronomy and Astrophysics, 2008, 492, 451-461.	5.1	21
167	Advection-dominated Inflow/Outflows from Evaporating Accretion Disks. Astrophysical Journal, 2000, 531, L49-L52.	4.5	20
168	Evaporation of ion-irradiated disks. Astronomy and Astrophysics, 2005, 434, 415-422.	5.1	20
169	Dust crystallinity in protoplanetary disks: the effect of diffusion/viscosity ratio. Astronomy and Astrophysics, 2007, 471, 833-840.	5.1	20
170	Importance of radiative effects in gap opening by planets in protoplanetary disks. Astronomy and Astrophysics, 2020, 637, A50.	5.1	19
171	Global axisymmetric simulations of photoevaporation and magnetically driven protoplanetary disk winds. Astronomy and Astrophysics, 2020, 633, A21.	5.1	18
172	A Note on Bimodal Accretion Disks. Astrophysical Journal, 1998, 503, 361-367.	4.5	15
173	A critical analysis of shock models for chondrule formation. Icarus, 2014, 242, 1-10.	2.5	15
174	Modeling the nonaxisymmetric structure in the HD 163296 disk with planet-disk interaction. Astronomy and Astrophysics, 2021, 647, A174.	5.1	15
175	Deep Spitzer Spectroscopy of the "Flying Saucer" Edge-on Disk: Large Grains beyond 50 AU. Astrophysical Journal, 2007, 658, L111-L114.	4.5	14
176	Warm gas at 50 AU in the disk around Herbig Be star HDÂ100546. Astronomy and Astrophysics, 2012, 539, A81.	5.1	14
177	Radiation hydrodynamics including irradiation and adaptive mesh refinement with AZEuS. Astronomy and Astrophysics, 2015, 574, A81.	5.1	14
178	Planet-vortex interaction: How a vortex can shepherd a planetary embryo. Astronomy and Astrophysics, 2014, 572, A61.	5.1	13
179	X-ray spectra from accretion disks illuminated by protons. Astronomy and Astrophysics, 2002, 387, 907-917.	5.1	13
180	An analysis of two-layer models for circumstellar disks. Astronomy and Astrophysics, 2003, 405, 597-605.	5.1	13

#	Article	IF	CITATIONS
181	Accretion through the inner hole of transitional disks: what happens to the dust?. Astronomy and Astrophysics, 2011, 531, A101.	5.1	11
182	FORMING CHONDRULES IN IMPACT SPLASHES. II. VOLATILE RETENTION. Astrophysical Journal, 2016, 832, 91.	4.5	11
183	Dust entrainment in magnetically and thermally driven disk winds. Astronomy and Astrophysics, 2022, 659, A42.	5.1	11
184	Low-velocity collisions of chondrules: How a thin dust cover helps enhance the sticking probability. Astronomy and Astrophysics, 2017, 599, L4.	5.1	9
185	Mid-infrared interferometric variability of DG Tauri: Implications for the inner-disk structure. Astronomy and Astrophysics, 2017, 604, A84.	5.1	9
186	Breaking through: the effects of a velocity distribution on barriers to dust growth <i>(Corrigendum)</i> . Astronomy and Astrophysics, 2012, 548, C1.	5.1	8
187	The Dynamic Proto-atmospheres around Low-mass Planets with Eccentric Orbits. Astrophysical Journal, 2020, 899, 54.	4.5	8
188	A quantification of hydrodynamical effects on protoplanetary dust growth. Astronomy and Astrophysics, 2013, 560, A96.	5.1	7
189	Self-sustaining vortices in protoplanetary discs: Setting the stage for planetary system formation. Monthly Notices of the Royal Astronomical Society, 2021, 506, 2685-2694.	4.4	6
190	Chemistry and Line Emission of Outer Protoplanetary Disks. Proceedings of the International Astronomical Union, 2005, 1, 377.	0.0	5
191	PROBING INTERSTELLAR DUST WITH INFRARED ECHOES FROM THE Cas A SUPERNOVA. Astrophysical Journal, 2012, 750, 155.	4.5	4
192	Migration jumps of planets in transition discs. Astronomy and Astrophysics, 2020, 643, A87.	5.1	4
193	Dust coagulation and processing in an evolving disk. Physica Scripta, 2008, T130, 014015.	2.5	3
194	Formation of (exo–)planets. Astronomische Nachrichten, 2013, 334, 589-594.	1.2	3
195	Model infrared spectra of passively heated proto-planetary disks surrounding intermediate-mass pre-main-sequence stars. Astronomy and Astrophysics, 2009, 496, 741-749.	5.1	3
196	Evolution of protoplanetary disk structures. , 2010, , 66-96.		2
197	Surface waves in protoplanetary disks induced by outbursts: Concentric rings in scattered light. Astronomy and Astrophysics, 2018, 617, L7.	5.1	2
198	High-resolution spectroscopic view of planet formation sites. Proceedings of the International Astronomical Union, 2010, 6, 50-53.	0.0	1

#	Article	IF	CITATIONS
199	Observations of inhomogeneities in protoplanetary disks. EPJ Web of Conferences, 2013, 46, 01001.	0.3	1
200	Herbig Ae/Be Star Disks at High Angular Resolution. Symposium - International Astronomical Union, 2004, 221, 389-394.	0.1	0
201	Radiative transfer in clumpy tori: what happens to the 10- $\hat{1}$ /4m feature?. AIP Conference Proceedings, 2005, , .	0.4	Ο
202	Searching for H ₂ emission from protoplanetary disks using near- and mid-infrared high-resolution spectroscopy. Proceedings of the International Astronomical Union, 2007, 3, 359-368.	0.0	0
203	Evolution of protoplanetary disks. Proceedings of the International Astronomical Union, 2009, 5, 736-737.	0.0	0
204	Planet formation in action: resolved gas and dust images of a transitional disk and its cavity. Proceedings of the International Astronomical Union, 2013, 8, 90-93.	0.0	0
205	TW Hydrae: multi-wavelength interferometry of a transition disk. Proceedings of the International Astronomical Union, 2013, 8, 104-108.	0.0	Ο
206	Interferometer predictions with triangulated images: solving the multiscale problem. Monthly Notices of the Royal Astronomical Society, 2014, 440, 3285-3291.	4.4	0
207	The Pre-Main Sequence Spectroscopic Binary AK Sco. , 2003, , 107-114.		Ο
208	Breaking through: the effects of a velocity distribution on barriers to dust growth (Corrigendum). Astronomy and Astrophysics, 0, , .	5.1	0