Pedro Martins

List of Publications by Citations

Source: https://exaly.com/author-pdf/5783135/pedro-martins-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

44 4,179 23 49 g-index

49 g-index

49 ext. papers ext. citations avg, IF

5,171 avg, IF

L-index

#	Paper	IF	Citations
44	Energy and fuels from electrochemical interfaces. <i>Nature Materials</i> , 2016 , 16, 57-69	27	1064
43	Design of active and stable Co-Mo-Sx chalcogels as pH-universal catalysts for the hydrogen evolution reaction. <i>Nature Materials</i> , 2016 , 15, 197-203	27	683
42	Electroactive poly(vinylidene fluoride)-based structures for advanced applications. <i>Nature Protocols</i> , 2018 , 13, 681-704	18.8	320
41	Advances in Magnetic Nanoparticles for Biomedical Applications. <i>Advanced Healthcare Materials</i> , 2018 , 7, 1700845	10.1	277
40	High-Performance RhP Electrocatalyst for Efficient Water Splitting. <i>Journal of the American Chemical Society</i> , 2017 , 139, 5494-5502	16.4	267
39	Dynamic stability of active sites in hydr(oxy)oxides for the oxygen evolution reaction. <i>Nature Energy</i> , 2020 , 5, 222-230	62.3	241
38	Relationships between Atomic Level Surface Structure and Stability/Activity of Platinum Surface Atoms in Aqueous Environments. <i>ACS Catalysis</i> , 2016 , 6, 2536-2544	13.1	146
37	Sources of processed lipoaspirate cells: influence of donor site on cell concentration. <i>Plastic and Reconstructive Surgery</i> , 2008 , 122, 614-618	2.7	114
36	Influence of ferrite nanoparticle type and content on the crystallization kinetics and electroactive phase nucleation of poly(vinylidene fluoride). <i>Langmuir</i> , 2011 , 27, 7241-9	4	109
35	Water as a Promoter and Catalyst for Dioxygen Electrochemistry in Aqueous and Organic Media. <i>ACS Catalysis</i> , 2015 , 5, 6600-6607	13.1	92
34	Electrocatalytic transformation of HF impurity to H2 and LiF in lithium-ion batteries. <i>Nature Catalysis</i> , 2018 , 1, 255-262	36.5	83
33	Double layer effects in electrocatalysis: The oxygen reduction reaction and ethanol oxidation reaction on Au(1 1 1), Pt(1 1 1) and Ir(1 1 1) in alkaline media containing Na and Li cations. <i>Catalysis Today</i> , 2016 , 262, 41-47	5.3	61
32	Dynamically Stable Active Sites from Surface Evolution of Perovskite Materials during the Oxygen Evolution Reaction. <i>Journal of the American Chemical Society</i> , 2021 , 143, 2741-2750	16.4	58
31	Eliminating dissolution of platinum-based electrocatalysts at the atomic scale. <i>Nature Materials</i> , 2020 , 19, 1207-1214	27	57
30	Hydrogen evolution reaction on copper: Promoting water dissociation by tuning the surface oxophilicity. <i>Electrochemistry Communications</i> , 2019 , 100, 30-33	5.1	52
29	Dynamics of electrochemical Pt dissolution at atomic and molecular levels. <i>Journal of Electroanalytical Chemistry</i> , 2018 , 819, 123-129	4.1	51
28	Synthesis and cytotoxic profile of 3,4-methylenedioxymethamphetamine ("ecstasy") and its metabolites on undifferentiated PC12 cells: A putative structure-toxicity relationship. <i>Chemical Research in Toxicology</i> 2006, 19, 1294-304	4	51

27	Metallic Glass/PVDF Magnetoelectric Laminates for Resonant Sensors and Actuators: A Review. Sensors, 2017 , 17,	3.8	45
26	Multifunctional gold-nanoparticles: A nanovectorization tool for the targeted delivery of novel chemotherapeutic agents. <i>Journal of Controlled Release</i> , 2017 , 245, 52-61	11.7	43
25	Past, present, and future of lead-acid batteries. <i>Science</i> , 2020 , 369, 923-924	33.3	38
24	Local probing of magnetoelectric properties of PVDF/FeO electrospun nanofibers by piezoresponse force microscopy. <i>Nanotechnology</i> , 2017 , 28, 065707	3.4	28
23	POxylated Polyurea Dendrimers: Smart Core-Shell Vectors with IC50 Lowering Capacity. <i>Macromolecular Bioscience</i> , 2015 , 15, 1045-51	5.5	25
22	Low-field giant magneto-ionic response in polymer-based nanocomposites. <i>Nanoscale</i> , 2018 , 10, 15747-	-1,5754	24
21	When Small is Big: The Role of Impurities in Electrocatalysis. <i>Topics in Catalysis</i> , 2015 , 58, 1174-1180	2.3	23
20	Electrokinetic Analysis of Poorly Conductive Electrocatalytic Materials. ACS Catalysis, 2020, 10, 4990-49	963.1	21
19	Magnetically Controlled Drug Release System through Magnetomechanical Actuation. <i>Advanced Healthcare Materials</i> , 2016 , 5, 3027-3034	10.1	19
18	The influence of muscles activation on the dynamical behaviour of the tympano-ossicular system of the middle ear. <i>Computer Methods in Biomechanics and Biomedical Engineering</i> , 2013 , 16, 392-402	2.1	17
17	Exploring the Interface of Skin-Layered Titanium Fibers for Electrochemical Water Splitting. <i>Advanced Energy Materials</i> , 2021 , 11, 2002926	21.8	17
16	Wide-Range Magnetoelectric Response on Hybrid Polymer Composites Based on Filler Type and Content. <i>Polymers</i> , 2017 , 9,	4.5	16
15	Electrocatalytic Activity and Stability of Platinum Nanoparticles Supported on Carbon Molybdenum Oxides for the Oxygen Reduction Reaction. <i>ChemElectroChem</i> , 2015 , 2, 1298-1306	4.3	16
14	Patterns of distribution and abundance of the stalked barnacle (Pollicipes pollicipes) in the central and southwest coast of continental Portugal. <i>Journal of Sea Research</i> , 2013 , 83, 187-194	1.9	15
13	Covalent coupling of gum arabic onto superparamagnetic iron oxide nanoparticles for MRI cell labeling: physicochemical and in vitro characterization. <i>Contrast Media and Molecular Imaging</i> , 2015 , 10, 320-8	3.2	15
12	The role of an interface in stabilizing reaction intermediates for hydrogen evolution in aprotic electrolytes. <i>Chemical Science</i> , 2020 , 11, 3914-3922	9.4	12
11	Improved Rate for the Oxygen Reduction Reaction in a Sulfuric Acid Electrolyte using a Pt(111) Surface Modified with Melamine. <i>ACS Applied Materials & District Research</i> , 13, 3369-3376	9.5	12
10	Conceptual Representations for Computational Concept Creation. <i>ACM Computing Surveys</i> , 2019 , 52, 1-33	13.4	11

9	Real-Time Monitoring of Cation Dissolution/Deintercalation Kinetics from Transition-Metal Oxides in Organic Environments. <i>Journal of Physical Chemistry Letters</i> , 2018 , 9, 4935-4940	6.4	11
8	Employing the Dynamics of the Electrochemical Interface in Aqueous Zinc-Ion Battery Cathodes. <i>Advanced Functional Materials</i> , 2021 , 31, 2102135	15.6	9
7	Effects of the fibers distribution in the human eardrum: A biomechanical study. <i>Journal of Biomechanics</i> , 2016 , 49, 1518-1523	2.9	8
6	A percolation theory for designing corrosion-resistant alloys. <i>Nature Materials</i> , 2021 , 20, 789-793	27	7
5	Magnetoelectric coupling in nanoscale 0-1 connectivity. <i>Nanoscale</i> , 2018 , 10, 17370-17377	7.7	6
4	Emojinating: Evolving Emoji Blends. <i>Lecture Notes in Computer Science</i> , 2019 , 110-126	0.9	3
3	Active electrochemical interfaces stabilized through self-organized potential oscillations. <i>Electrochemistry Communications</i> , 2020 , 121, 106853	5.1	3
2	(Plenary) Substrate Effects on the Activity and Stability of Nanoparticulated Electrocatalysts for the H2/O2 Fuel Cell Reactions. <i>ECS Transactions</i> , 2014 , 64, 47-60	1	

The clinical use of exhaled nitric oxide in wheezing children. *Revista Portuguesa De Pneumologia*, **2008**, 14, 195-218