Justin C Kasper

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5783081/publications.pdf Version: 2024-02-01

LUSTIN C KASDED

#	Article	IF	CITATIONS
1	Two Correlations with Enhancement Near the Proton Gyroradius Scale in Solar Wind Turbulence: Parker Solar Probe (PSP) and Wind Observations. Astrophysical Journal, 2022, 924, 92.	1.6	5
2	Strong Perpendicular Velocity-space Diffusion in Proton Beams Observed by Parker Solar Probe. Astrophysical Journal, 2022, 924, 112.	1.6	16
3	Parker Solar Probe Evidence for the Absence of Whistlers Close to the Sun to Scatter Strahl and to Regulate Heat Flux. Astrophysical Journal Letters, 2022, 924, L33.	3.0	19
4	Improving the Alfvén Wave Solar Atmosphere Model Based on Parker Solar Probe Data. Astrophysical Journal, 2022, 925, 146.	1.6	16
5	Flux Rope Merging and the Structure of Switchbacks in the Solar Wind. Astrophysical Journal, 2022, 925, 213.	1.6	11
6	PSP/IS⊙IS Observation of a Solar Energetic Particle Event Associated with a Streamer Blowout Coronal Mass Ejection during Encounter 6. Astrophysical Journal, 2022, 925, 212.	1.6	3
7	Sub-Alfvénic Solar Wind Observed by the Parker Solar Probe: Characterization of Turbulence, Anisotropy, Intermittency, and Switchback. Astrophysical Journal Letters, 2022, 926, L1.	3.0	28
8	Flux rope and dynamics of the heliospheric current sheet. Astronomy and Astrophysics, 2022, 659, A110.	2.1	20
9	Turbulence in the Sub-Alfvénic Solar Wind. Astrophysical Journal Letters, 2022, 926, L16.	3.0	36
10	Alpha–Proton Differential Flow of the Young Solar Wind: Parker Solar Probe Observations. Astrophysical Journal Letters, 2022, 926, L38.	3.0	13
11	Suprathermal Ion Energy Spectra and Anisotropies near the Heliospheric Current Sheet Crossing Observed by the Parker Solar Probe during Encounter 7. Astrophysical Journal, 2022, 927, 62.	1.6	3
12	The Turbulent Properties of the Sub-Alfvénic Solar Wind Measured by the Parker Solar Probe. Astrophysical Journal Letters, 2022, 928, L15.	3.0	19
13	Parker Solar Probe Observations of Solar Wind Energetic Proton Beams Produced by Magnetic Reconnection in the Near‣un Heliospheric Current Sheet. Geophysical Research Letters, 2022, 49, .	1.5	15
14	Direct First Parker Solar Probe Observation of the Interaction of Two Successive Interplanetary Coronal Mass Ejections in 2020 November. Astrophysical Journal, 2022, 930, 88.	1.6	14
15	Density and Velocity Fluctuations of Alpha Particles in Magnetic Switchbacks. Astrophysical Journal, 2022, 933, 43.	1.6	6
16	Radial Evolution of a CIR: Observations From a Nearly Radially Aligned Event Between Parker Solar Probe and STEREOâ€A. Geophysical Research Letters, 2021, 48, e2020GL091376.	1.5	16
17	Parker Solar Probe Observations of Alfvénic Waves and Ion-cyclotron Waves in a Small-scale Flux Rope. Astrophysical Journal Letters, 2021, 908, L19.	3.0	10
18	The Sun Radio Interferometer Space Experiment (SunRISE) Mission. , 2021, , .		3

#	Article	IF	CITATIONS
19	Inferred Linear Stability of Parker Solar Probe Observations Using One- and Two-component Proton Distributions. Astrophysical Journal, 2021, 909, 7.	1.6	22
20	Evidence of Subproton cale Magnetic Holes in the Venusian Magnetosheath. Geophysical Research Letters, 2021, 48, e2020GL090329.	1.5	18
21	The Ion Transition Range of Solar Wind Turbulence in the Inner Heliosphere: Parker Solar Probe Observations. Astrophysical Journal Letters, 2021, 909, L7.	3.0	20
22	Multiscale Solar Wind Turbulence Properties inside and near Switchbacks Measured by the Parker Solar Probe. Astrophysical Journal, 2021, 912, 28.	1.6	23
23	Parker Solar Probe Evidence for Scattering of Electrons in the Young Solar Wind by Narrowband Whistler-mode Waves. Astrophysical Journal Letters, 2021, 911, L29.	3.0	24
24	Solar Wind Helium Abundance Heralds Solar Cycle Onset. Solar Physics, 2021, 296, 1.	1.0	10
25	A Quarter Century of <i>Wind</i> Spacecraft Discoveries. Reviews of Geophysics, 2021, 59, e2020RG000714.	9.0	52
26	Evolution of Solar Wind Turbulence from 0.1 to 1 au during the First Parker Solar Probe–Solar Orbiter Radial Alignment. Astrophysical Journal Letters, 2021, 912, L21.	3.0	49
27	Wave-particle energy transfer directly observed in an ion cyclotron wave. Astronomy and Astrophysics, 2021, 650, A10.	2.1	12
28	Electron Bernstein waves and narrowband plasma waves near the electron cyclotron frequency in the near-Sun solar wind. Astronomy and Astrophysics, 2021, 650, A97.	2.1	12
29	Energetic particle behavior in near-Sun magnetic field switchbacks from PSP. Astronomy and Astrophysics, 2021, 650, L4.	2.1	12
30	The near-Sun streamer belt solar wind: turbulence and solar wind acceleration. Astronomy and Astrophysics, 2021, 650, L3.	2.1	26
31	Switchbacks as signatures of magnetic flux ropes generated by interchange reconnection in the corona. Astronomy and Astrophysics, 2021, 650, A2.	2.1	80
32	Small-scale Magnetic Flux Ropes with Field-aligned Flows via the PSP In Situ Observations. Astrophysical Journal, 2021, 914, 108.	1.6	14
33	Electron heat flux in the near-Sun environment. Astronomy and Astrophysics, 2021, 650, A15.	2.1	32
34	Whistler wave occurrence and the interaction with strahl electrons during the first encounter of Parker Solar Probe. Astronomy and Astrophysics, 2021, 650, A9.	2.1	22
35	Narrowband oblique whistler-mode waves: comparing properties observed by Parker Solar Probe at & & & & & & & & & & & & & & & & & &	2.1	20
36	Switchbacks: statistical properties and deviations from Alfvénicity. Astronomy and Astrophysics, 2021, 650, A3.	2.1	37

#	Article	IF	CITATIONS
37	Enhanced proton parallel temperature inside patches of switchbacks in the inner heliosphere. Astronomy and Astrophysics, 2021, 650, L1.	2.1	43
38	A living catalog of stream interaction regions in the Parker Solar Probe era. Astronomy and Astrophysics, 2021, 650, A25.	2.1	17
39	Statistical analysis of orientation, shape, and size of solar wind switchbacks. Astronomy and Astrophysics, 2021, 650, A1.	2.1	34
40	Detection of small magnetic flux ropes from the third and fourth Parker Solar Probe encounters. Astronomy and Astrophysics, 2021, 650, A12.	2.1	35
41	Prevalence of magnetic reconnection in the near-Sun heliospheric current sheet. Astronomy and Astrophysics, 2021, 650, A13.	2.1	23
42	The contribution of alpha particles to the solar wind angular momentum flux in the inner heliosphere. Astronomy and Astrophysics, 2021, 650, A17.	2.1	11
43	Solar wind energy flux observations in the inner heliosphere: first results from Parker Solar Probe. Astronomy and Astrophysics, 2021, 650, A14.	2.1	12
44	A new view of energetic particles from stream interaction regions observed by Parker Solar Probe. Astronomy and Astrophysics, 2021, 650, A24.	2.1	15
45	Direct evidence for magnetic reconnection at the boundaries of magnetic switchbacks with Parker Solar Probe. Astronomy and Astrophysics, 2021, 650, A5.	2.1	27
46	Time evolution of stream interaction region energetic particle spectra in the inner heliosphere. Astronomy and Astrophysics, 2021, 650, L5.	2.1	14
47	Characteristics of Interplanetary Discontinuities in the Inner Heliosphere Revealed by Parker Solar Probe. Astrophysical Journal, 2021, 916, 65.	1.6	14
48	Switchback Boundary Dissipation and Relative Age. Astrophysical Journal, 2021, 915, 68.	1.6	3
49	The Sunward Electron Deficit: A Telltale Sign of the Sun's Electric Potential. Astrophysical Journal, 2021, 916, 16.	1.6	14
50	Near-Sun Switchback Boundaries: Dissipation with Solar Distance. Astrophysical Journal, 2021, 916, 84.	1.6	3
51	Turbulence transport in the solar corona: Theory, modeling, and Parker Solar Probe. Physics of Plasmas, 2021, 28, .	0.7	54
52	Switchback-like structures observed by Solar Orbiter. Astronomy and Astrophysics, 2021, 656, A40.	2.1	7
53	Characteristic Scales of Magnetic Switchback Patches Near the Sun and Their Possible Association With Solar Supergranulation and Granulation. Astrophysical Journal, 2021, 919, 96.	1.6	50
54	Kineticâ€Scale Turbulence in the Venusian Magnetosheath. Geophysical Research Letters, 2021, 48, e2020GL090783.	1.5	11

#	Article	IF	CITATIONS
55	Exploring the Solar Wind from Its Source on the Corona into the Inner Heliosphere during the First Solar Orbiter–Parker Solar Probe Quadrature. Astrophysical Journal Letters, 2021, 920, L14.	3.0	25
56	Multiscale views of an Alfvénic slow solar wind: 3D velocity distribution functions observed by the Proton-Alpha Sensor of Solar Orbiter. Astronomy and Astrophysics, 2021, 656, A36.	2.1	12
57	Ambipolar Electric Field and Potential in the Solar Wind Estimated from Electron Velocity Distribution Functions. Astrophysical Journal, 2021, 921, 83.	1.6	14
58	Tracking the Source of Solar Type II Bursts through Comparisons of Simulations and Radio Data. Astrophysical Journal, 2021, 922, 203.	1.6	4
59	MHD and Ion Kinetic Waves in Field-aligned Flows Observed by Parker Solar Probe. Astrophysical Journal, 2021, 922, 188.	1.6	19
60	<i>Parker Solar Probe</i> Enters the Magnetically Dominated Solar Corona. Physical Review Letters, 2021, 127, 255101.	2.9	104
61	A Solar Source of Alfvénic Magnetic Field Switchbacks: In Situ Remnants of Magnetic Funnels on Supergranulation Scales. Astrophysical Journal, 2021, 923, 174.	1.6	67
62	Precise Detections of Solar Particle Events and a New View of the Moon. Geophysical Research Letters, 2020, 47, e2019GL085522.	1.5	3
63	Plasma Double Layers at the Boundary Between Venus and the Solar Wind. Geophysical Research Letters, 2020, 47, e2020GL090115.	1.5	16
64	Proton core behaviour inside magnetic field switchbacks. Monthly Notices of the Royal Astronomical Society, 2020, 498, 5524-5531.	1.6	29
65	Longâ€Term Observations of Galactic Cosmic Ray LET Spectra in Lunar Orbit by LRO/CRaTER. Space Weather, 2020, 18, e2020SW002543.	1.3	3
66	Parker Solar Probe Observations of Proton Beams Simultaneous with Ion-scale Waves. Astrophysical Journal, Supplement Series, 2020, 248, 5.	3.0	62
67	Switchbacks in the Solar Magnetic Field: Their Evolution, Their Content, and Their Effects on the Plasma. Astrophysical Journal, Supplement Series, 2020, 246, 68.	3.0	83
68	The Heliospheric Current Sheet and Plasma Sheet during Parker Solar Probe's First Orbit. Astrophysical Journal Letters, 2020, 894, L19.	3.0	39
69	MHD Mode Composition in the Inner Heliosphere from the <i>Parker Solar Probe</i> 's First Perihelion. Astrophysical Journal, Supplement Series, 2020, 246, 71.	3.0	17
70	Proton Temperature Anisotropy Variations in Inner Heliosphere Estimated with the First <i>Parker Solar Probe</i> Observations. Astrophysical Journal, Supplement Series, 2020, 246, 70.	3.0	56
71	Sunward-propagating Whistler Waves Collocated with Localized Magnetic Field Holes in the Solar Wind: Parker Solar Probe Observations at 35.7 R _⊙ Radii. Astrophysical Journal Letters, 2020, 891, L20.	3.0	46
72	The Solar Probe ANalyzers—Electrons on the Parker Solar Probe. Astrophysical Journal, Supplement Series, 2020, 246, 74.	3.0	114

#	Article	IF	CITATIONS
73	The Solar Probe Cup on the Parker Solar Probe. Astrophysical Journal, Supplement Series, 2020, 246, 43.	3.0	154
74	Observations of Energetic-particle Population Enhancements along Intermittent Structures near the Sun from the Parker Solar Probe. Astrophysical Journal, Supplement Series, 2020, 246, 61.	3.0	25
75	Kinetic Scale Slow Solar Wind Turbulence in the Inner Heliosphere: Coexistence of Kinetic Alfvén Waves and Alfvén Ion Cyclotron Waves. Astrophysical Journal Letters, 2020, 897, L3.	3.0	28
76	Constraining Ion-Scale Heating and Spectral Energy Transfer in Observations of Plasma Turbulence. Physical Review Letters, 2020, 125, 025102.	2.9	29
77	Relating Streamer Flows to Density and Magnetic Structures at the Parker Solar Probe. Astrophysical Journal, Supplement Series, 2020, 246, 37.	3.0	52
78	Analysis of the Internal Structure of the Streamer Blowout Observed by the Parker Solar Probe During the First Solar Encounter. Astrophysical Journal, Supplement Series, 2020, 246, 63.	3.0	34
79	Density Fluctuations in the Solar Wind Based on Type III Radio Bursts Observed by Parker Solar Probe. Astrophysical Journal, Supplement Series, 2020, 246, 57.	3.0	45
80	Clustering of Intermittent Magnetic and Flow Structures near Parker Solar Probe's First Perihelion—A Partial-variance-of-increments Analysis. Astrophysical Journal, Supplement Series, 2020, 246, 31.	3.0	37
81	Observations of Heating along Intermittent Structures in the Inner Heliosphere from PSP Data. Astrophysical Journal, Supplement Series, 2020, 246, 46.	3.0	26
82	The Heliospheric Current Sheet in the Inner Heliosphere Observed by the Parker Solar Probe. Astrophysical Journal, Supplement Series, 2020, 246, 47.	3.0	50
83	The Evolution and Role of Solar Wind Turbulence in the Inner Heliosphere. Astrophysical Journal, Supplement Series, 2020, 246, 53.	3.0	166
84	Measures of Scale-dependent Alfvénicity in the First <i>PSP</i> Solar Encounter. Astrophysical Journal, Supplement Series, 2020, 246, 58.	3.0	51
85	Source and Propagation of a Streamer Blowout Coronal Mass Ejection Observed by the Parker Solar Probe. Astrophysical Journal, Supplement Series, 2020, 246, 69.	3.0	29
86	Solar Wind Streams and Stream Interaction Regions Observed by the Parker Solar Probe with Corresponding Observations at 1 au. Astrophysical Journal, Supplement Series, 2020, 246, 36.	3.0	43
87	Ion-scale Electromagnetic Waves in the Inner Heliosphere. Astrophysical Journal, Supplement Series, 2020, 246, 66.	3.0	67
88	Cross Helicity Reversals in Magnetic Switchbacks. Astrophysical Journal, Supplement Series, 2020, 246, 67.	3.0	61
89	The Role of Alfvén Wave Dynamics on the Large-scale Properties of the Solar Wind: Comparing an MHD Simulation with Parker Solar Probe E1 Data. Astrophysical Journal, Supplement Series, 2020, 246, 24. 	3.0	66
90	Solar Energetic Particles Produced by a Slow Coronal Mass Ejection at â^¼0.25 au. Astrophysical Journal, Supplement Series, 2020, 246, 29.	3.0	35

#	Article	IF	CITATIONS
91	³ He-rich Solar Energetic Particle Observations at the Parker Solar Probe and near Earth. Astrophysical Journal, Supplement Series, 2020, 246, 42.	3.0	27
92	Enhanced Energy Transfer Rate in Solar Wind Turbulence Observed near the Sun from <i>Parker Solar Probe</i> . Astrophysical Journal, Supplement Series, 2020, 246, 48.	3.0	56
93	Statistics and Polarization of Type III Radio Bursts Observed in the Inner Heliosphere. Astrophysical Journal, Supplement Series, 2020, 246, 49.	3.0	35
94	CME-associated Energetic Ions at 0.23 au: Consideration of the Auroral Pressure Cooker Mechanism Operating in the Low Corona as a Possible Energization Process. Astrophysical Journal, Supplement Series, 2020, 246, 59.	3.0	21
95	Energetic Particle Increases Associated with Stream Interaction Regions. Astrophysical Journal, Supplement Series, 2020, 246, 20.	3.0	31
96	Plasma Waves near the Electron Cyclotron Frequency in the Near-Sun Solar Wind. Astrophysical Journal, Supplement Series, 2020, 246, 21.	3.0	30
97	Electrons in the Young Solar Wind: First Results from the Parker Solar Probe. Astrophysical Journal, Supplement Series, 2020, 246, 22.	3.0	99
98	Identification of Magnetic Flux Ropes from Parker Solar Probe Observations during the First Encounter. Astrophysical Journal, Supplement Series, 2020, 246, 26.	3.0	57
99	The Enhancement of Proton Stochastic Heating in the Near-Sun Solar Wind. Astrophysical Journal, Supplement Series, 2020, 246, 30.	3.0	23
100	Magnetic Field Kinks and Folds in the Solar Wind. Astrophysical Journal, Supplement Series, 2020, 246, 32.	3.0	86
101	Seed Population Preconditioning and Acceleration Observed by the Parker Solar Probe. Astrophysical Journal, Supplement Series, 2020, 246, 33.	3.0	21
102	Parker Solar Probe In Situ Observations of Magnetic Reconnection Exhausts during Encounter 1. Astrophysical Journal, Supplement Series, 2020, 246, 34.	3.0	65
103	Observations of the 2019 April 4 Solar Energetic Particle Event at the Parker Solar Probe. Astrophysical Journal, Supplement Series, 2020, 246, 35.	3.0	27
104	Turbulence Transport Modeling and First Orbit Parker Solar Probe (PSP) Observations. Astrophysical Journal, Supplement Series, 2020, 246, 38.	3.0	53
105	Predicting the Solar Wind at the Parker Solar Probe Using an Empirically Driven MHD Model. Astrophysical Journal, Supplement Series, 2020, 246, 40.	3.0	14
106	Properties of Suprathermal-through-energetic He Ions Associated with Stream Interaction Regions Observed over the Parker Solar Probe's First Two Orbits. Astrophysical Journal, Supplement Series, 2020, 246, 56.	3.0	29
107	Coronal Electron Temperature Inferred from the Strahl Electrons in the Inner Heliosphere: Parker Solar Probe and Helios Observations. Astrophysical Journal, 2020, 892, 88.	1.6	34
108	Global Circulation of the Open Magnetic Flux of the Sun. Astrophysical Journal Letters, 2020, 894, L4.	3.0	87

#	Article	IF	CITATIONS
109	Measuring the Earth's Synchrotron Emission From Radiation Belts With a Lunar Near Side Radio Array. Radio Science, 2020, 55, e2019RS006891.	0.8	3
110	Localized Magnetic-field Structures and Their Boundaries in the Near-Sun Solar Wind from Parker Solar Probe Measurements. Astrophysical Journal, 2020, 893, 93.	1.6	44
111	Electron Energy Partition across Interplanetary Shocks. III. Analysis. Astrophysical Journal, 2020, 893, 22.	1.6	21
112	Small Electron Events Observed by Parker Solar Probe/IS⊙IS during Encounter 2. Astrophysical Journal, 2020, 902, 20.	1.6	9
113	Shear-driven Transition to Isotropically Turbulent Solar Wind Outside the Alfvén Critical Zone. Astrophysical Journal, 2020, 902, 94.	1.6	83
114	Small-scale Magnetic Flux Ropes in the First Two Parker Solar Probe Encounters. Astrophysical Journal, 2020, 903, 76.	1.6	22
115	The Origin of Switchbacks in the Solar Corona: Linear Theory. Astrophysical Journal, 2020, 903, 1.	1.6	78
116	Magnetic Connectivity of the Ecliptic Plane within 0.5 au: Potential Field Source Surface Modeling of the First Parker Solar Probe Encounter. Astrophysical Journal, Supplement Series, 2020, 246, 23.	3.0	100
117	Sharp Alfvénic Impulses in the Near-Sun Solar Wind. Astrophysical Journal, Supplement Series, 2020, 246, 45.	3.0	115
118	Kinetic-scale Spectral Features of Cross Helicity and Residual Energy in the Inner Heliosphere. Astrophysical Journal, Supplement Series, 2020, 246, 52.	3.0	10
119	Exploring Solar Wind Origins and Connecting Plasma Flows from the <i>Parker Solar Probe</i> to 1 au: Nonspherical Source Surface and Alfvénic Fluctuations. Astrophysical Journal, Supplement Series, 2020, 246, 54.	3.0	46
120	Anticorrelation between the Bulk Speed and the Electron Temperature in the Pristine Solar Wind: First Results from the <i>Parker Solar Probe</i> and Comparison with <i>Helios</i> . Astrophysical Journal, Supplement Series, 2020, 246, 62.	3.0	55
121	The Radial Dependence of Proton-scale Magnetic Spectral Break in Slow Solar Wind during <i>PSP</i> Encounter 2. Astrophysical Journal, Supplement Series, 2020, 246, 55.	3.0	36
122	Magnetic Field Dropouts at Near-Sun Switchback Boundaries: A Superposed Epoch Analysis. Astrophysical Journal, Supplement Series, 2020, 249, 28.	3.0	39
123	The Solar Wind Angular Momentum Flux as Observed by Parker Solar Probe. Astrophysical Journal Letters, 2020, 902, L4.	3.0	11
124	Turbulence Characteristics of Switchback and Nonswitchback Intervals Observed byÂParker Solar Probe. Astrophysical Journal Letters, 2020, 904, L30.	3.0	31
125	The interpretation of data from the Parker Solar Probe mission: shear-driven transition to an isotropically turbulent solar wind. Radiation Effects and Defects in Solids, 2020, 175, 1002-1003.	0.4	0
126	Electron Energy Partition across Interplanetary Shocks. I. Methodology and Data Product. Astrophysical Journal, Supplement Series, 2019, 243, 8.	3.0	57

4

#	Article	IF	CITATIONS
127	The Data Processing Pipeline and Science Analysis of the Sun Radio Interferometer Space Experiment. , 2019, , .		5
128	Correcting Parker Solar Probe Electron Measurements for Spacecraft Magnetic and Electric Fields. Journal of Geophysical Research: Space Physics, 2019, 124, 7369-7384.	0.8	3
129	Helium Variation across Two Solar Cycles Reveals a Speed-dependent Phase Lag. Astrophysical Journal Letters, 2019, 879, L6.	3.0	23
130	Strong Preferential Ion Heating is Limited to within the Solar Alfvén Surface. Astrophysical Journal Letters, 2019, 877, L35.	3.0	25
131	Predictions for the First Parker Solar Probe Encounter. Astrophysical Journal Letters, 2019, 872, L18.	3.0	26
132	Electron Energy Partition across Interplanetary Shocks. II. Statistics. Astrophysical Journal, Supplement Series, 2019, 245, 24.	3.0	40
133	Probing the energetic particle environment near the Sun. Nature, 2019, 576, 223-227.	13.7	103
134	Alfvénic velocity spikes and rotational flows in the near-Sun solar wind. Nature, 2019, 576, 228-231.	13.7	311
135	Highly structured slow solar wind emerging from an equatorial coronal hole. Nature, 2019, 576, 237-242.	13.7	401
136	Update on the Worsening Particle Radiation Environment Observed by CRaTER and Implications for Future Human Deep‧pace Exploration. Space Weather, 2018, 16, 289-303.	1.3	44
137	Low Altitude Solar Magnetic Reconnection, Type III Solar Radio Bursts, and X-ray Emissions. Scientific Reports, 2018, 8, 1676.	1.6	38
138	Magnetic Reconnection May Control the Ion-scale Spectral Break of Solar Wind Turbulence. Astrophysical Journal Letters, 2018, 855, L27.	3.0	42
139	Large-scale Control of Kinetic Dissipation in the Solar Wind. Astrophysical Journal Letters, 2018, 863, L4.	3.0	4
140	A Comparison of Alpha Particle and Proton Beam Differential Flows in Collisionally Young Solar Wind. Astrophysical Journal, 2018, 864, 112.	1.6	55
141	The Statistical Properties of Solar Wind Temperature Parameters Near 1 au. Astrophysical Journal, Supplement Series, 2018, 236, 41.	3.0	94
142	Synthetic Radio Imaging for Quiescent and CME-flare Scenarios. Astrophysical Journal, 2018, 867, 51.	1.6	9
143	Majority of Solar Wind Intervals Support Ion-Driven Instabilities. Physical Review Letters, 2018, 120, 205102.	2.9	51

144 SunRISE status: Concept development update. , 2018, , .

#	Article	IF	CITATIONS
145	Sun radio interferometer space experiment (SunRISE): Tracking particle acceleration and transport in the inner heliosphere. , 2017, , .		14
146	A Space-based Observational Strategy for Characterizing the First Stars and Galaxies Using the Redshifted 21 cm Global Spectrum. Astrophysical Journal, 2017, 844, 33.	1.6	33
147	Revisiting the structure of lowâ€Mach number, lowâ€beta, quasiâ€perpendicular shocks. Journal of Geophysical Research: Space Physics, 2017, 122, 9115-9133.	0.8	52
148	Wavelet-based Characterization of Small-scale Solar Emission Features at Low Radio Frequencies. Astrophysical Journal, 2017, 843, 19.	1.6	26
149	Nature of Stochastic Ion Heating in the Solar Wind: Testing the Dependence on Plasma Beta and Turbulence Amplitude. Astrophysical Journal Letters, 2017, 850, L11.	3.0	36
150	A Zone of Preferential Ion Heating Extends Tens of Solar Radii from the Sun. Astrophysical Journal, 2017, 849, 126.	1.6	47
151	Magnetic Pumping as a Source of Particle Heating and Power-law Distributions in the Solar Wind. Astrophysical Journal Letters, 2017, 850, L28.	3.0	32
152	Applying Nyquist's method for stability determination to solar wind observations. Journal of Geophysical Research: Space Physics, 2017, 122, 9815-9823.	0.8	17
153	The sun radio space imaging experiment (SunRISE). , 2017, , .		0
154	LOW-FREQUENCY OBSERVATIONS OF LINEARLY POLARIZED STRUCTURES IN THE INTERSTELLAR MEDIUM NEAR THE SOUTH GALACTIC POLE. Astrophysical Journal, 2016, 830, 38.	1.6	58
155	Modification of Velocity Power Spectra by Thermal Plasma Instrumentation. Journal of Physics: Conference Series, 2016, 767, 012026.	0.3	1
156	Solar modulation of the deep space galactic cosmic ray lineal energy spectrum measured by CRaTER, 2009–2014. Space Weather, 2016, 14, 247-258.	1.3	7
157	FIRST SEASON MWA EOR POWER SPECTRUM RESULTS AT REDSHIFT 7. Astrophysical Journal, 2016, 833, 102.	1.6	147
158	THE IMPORTANCE OF WIDE-FIELD FOREGROUND REMOVAL FOR 21 cm COSMOLOGY: A DEMONSTRATION WITH EARLY MWA EPOCH OF REIONIZATION OBSERVATIONS. Astrophysical Journal, 2016, 819, 8.	1.6	65
159	Ionâ€driven instabilities in the solar wind: Wind observations of 19 March 2005. Journal of Geophysical Research: Space Physics, 2016, 121, 30-41.	0.8	66
160	A high reliability survey of discrete Epoch of Reionization foreground sources in the MWA EoRO field. Monthly Notices of the Royal Astronomical Society, 2016, 461, 4151-4175.	1.6	27
161	COMPRESSIVE COHERENT STRUCTURES AT ION SCALES IN THE SLOW SOLAR WIND. Astrophysical Journal, 2016, 826, 196.	1.6	81
162	Implications of L1 observations for slow solar wind formation by solar reconnection. Geophysical Research Letters, 2016, 43, 4089-4097.	1.5	60

#	Article	IF	CITATIONS
163	Constraining Solar Wind Heating Processes by Kinetic Properties of Heavy Ions. Physical Review Letters, 2016, 116, 255101.	2.9	21
164	THE MURCHISON WIDEFIELD ARRAY 21 cm POWER SPECTRUM ANALYSIS METHODOLOGY. Astrophysical Journal, 2016, 825, 114.	1.6	67
165	The FIELDS Instrument Suite for Solar Probe Plus. Space Science Reviews, 2016, 204, 49-82.	3.7	521
166	First limits on the 21Âcm power spectrum during the Epoch of X-ray heating. Monthly Notices of the Royal Astronomical Society, 2016, 460, 4320-4347.	1.6	79
167	The Solar Probe Plus Mission: Humanity's First Visit to Our Star. Space Science Reviews, 2016, 204, 7-48.	3.7	821
168	Integrated Science Investigation of the Sun (ISIS): Design of the Energetic Particle Investigation. Space Science Reviews, 2016, 204, 187-256.	3.7	139
169	Solar Wind Electrons Alphas and Protons (SWEAP) Investigation: Design of the Solar Wind and Coronal Plasma Instrument Suite for Solar Probe Plus. Space Science Reviews, 2016, 204, 131-186.	3.7	439
170	GLEAM: The GaLactic and Extragalactic All-Sky MWA Survey. Publications of the Astronomical Society of Australia, 2015, 32, .	1.3	221
171	Power spectrum analysis of ionospheric fluctuations with the Murchison Widefield Array. Radio Science, 2015, 50, 574-597.	0.8	30
172	THERMALIZATION OF HEAVY IONS IN THE SOLAR WIND. Astrophysical Journal, 2015, 812, 170.	1.6	24
173	An analysis of the halo and relic radio emission from Abell 3376 from Murchison Widefield Array observations. Monthly Notices of the Royal Astronomical Society, 2015, 451, 4207-4214.	1.6	12
174	Quantifying ionospheric effects on time-domain astrophysics with the Murchison Widefield Array. Monthly Notices of the Royal Astronomical Society, 2015, 453, 2732-2747.	1.6	24
175	The solar magnetic activity band interaction and instabilities that shape quasi-periodic variability. Nature Communications, 2015, 6, 6491.	5.8	97
176	A digital-receiver for the MurchisonWidefield Array. Experimental Astronomy, 2015, 39, 73-93.	1.6	17
177	THE SPECTRAL VARIABILITY OF THE GHZ-PEAKED SPECTRUM RADIO SOURCE PKS 1718-649 AND A COMPARISON OF ABSORPTION MODELS. Astronomical Journal, 2015, 149, 74.	1.9	36
178	Serendipitous discovery of a dying Giant Radio Galaxy associated with NGCÂ1534, using the Murchison Widefield Array. Monthly Notices of the Royal Astronomical Society, 2015, 447, 2468-2478.	1.6	31
179	The High Time and Frequency Resolution Capabilities of the Murchison Widefield Array. Publications of the Astronomical Society of Australia, 2015, 32, .	1.3	44
180	FOREGROUNDS IN WIDE-FIELD REDSHIFTED 21 cm POWER SPECTRA. Astrophysical Journal, 2015, 804, 14.	1.6	122

#	Article	IF	CITATIONS
181	Modelling of the spectral energy distribution of Fornax A: leptonic and hadronic production of high-energy emission from the radio lobes. Monthly Notices of the Royal Astronomical Society, 2015, 446, 3478-3491.	1.6	41
182	DIAGNOSTICS OF THE SOLAR CORONA FROM COMPARISON BETWEEN FARADAY ROTATION MEASUREMENTS AND MAGNETOHYDRODYNAMIC SIMULATIONS. Astrophysical Journal, 2014, 789, 163.	1.6	7
183	Limits on low-frequency radio emission from southern exoplanets with the Murchison Widefield Array. Monthly Notices of the Royal Astronomical Society, 2014, 446, 2560-2565.	1.6	39
184	The First Murchison Widefield Array low-frequency radio observations of cluster scale non-thermal emission: the case of Abell 3667. Monthly Notices of the Royal Astronomical Society, 2014, 445, 330-346.	1.6	39
185	Does the worsening galactic cosmic radiation environment observed by CRaTER preclude future manned deep space exploration?. Space Weather, 2014, 12, 622-632.	1.3	55
186	THE LOW-FREQUENCY CHARACTERISTICS OF PSR J0437–4715 OBSERVED WITH THE MURCHISON WIDE-FIELE ARRAY. Astrophysical Journal Letters, 2014, 791, L32.) 3.0	17
187	wsclean: an implementation of a fast, generic wide-field imager for radio astronomy. Monthly Notices of the Royal Astronomical Society, 2014, 444, 606-619.	1.6	562
188	STUDY OF REDSHIFTED H I FROM THE EPOCH OF REIONIZATION WITH DRIFT SCAN. Astrophysical Journal, 2014, 793, 28.	1.6	10
189	Coronal electron temperature in the protracted solar minimum, the cycle 24 mini maximum, and over centuries. Journal of Geophysical Research: Space Physics, 2014, 119, 1486-1492.	0.8	19
190	Radiation environment at the Moon: Comparisons of transport code modeling and measurements from the CRaTER instrument. Space Weather, 2014, 12, 329-336.	1.3	2
191	Synthesis of 3â€Ð Coronalâ€Solar Wind Energetic Particle Acceleration Modules. Space Weather, 2014, 12, 323-328.	1.3	23
192	Radiation modeling in the Earth and Mars atmospheres using LRO/CRaTER with the EMMREM Module. Space Weather, 2014, 12, 112-119.	1.3	8
193	Solar Wind Electrons Alphas and Protons (SWEAP) Science Operations Center initial design and implementation. Proceedings of SPIE, 2014, , .	0.8	1
194	A survey for transients and variables with the Murchison Widefield Array 32-tile prototype at 154 MHz. Monthly Notices of the Royal Astronomical Society, 2014, 438, 352-367.	1.6	54
195	The Murchison Widefield Array Commissioning Survey: A Low-Frequency Catalogue of 14 110 Compact Radio Sources over 6 100 Square Degrees. Publications of the Astronomical Society of Australia, 2014, 31, .	1.3	62
196	Improved interpretation of solar wind ion measurements via high-resolution magnetic field data. Advances in Space Research, 2013, 52, 723-731.	1.2	22
197	SELF-CONSISTENT ION CYCLOTRON ANISOTROPY-BETA RELATION FOR SOLAR WIND PROTONS. Astrophysical Journal, 2013, 773, 164.	1.6	28
198	A lunar L2-Farside exploration and science mission concept with the Orion Multi-Purpose Crew Vehicle and a teleoperated lander/rover. Advances in Space Research, 2013, 52, 306-320.	1.2	59

#	Article	IF	CITATIONS
199	Sensitive Test for Ion-Cyclotron Resonant Heating in the Solar Wind. Physical Review Letters, 2013, 110, 091102.	2.9	95
200	Interplanetary Nanodust Detection by the Solar Terrestrial Relations Observatory/WAVES Low Frequency Receiver. Solar Physics, 2013, 286, 549-559.	1.0	19
201	Shocklets, SLAMS, and fieldâ€eligned ion beams in the terrestrial foreshock. Journal of Geophysical Research: Space Physics, 2013, 118, 957-966.	0.8	60
202	Electromagnetic waves and electron anisotropies downstream of supercritical interplanetary shocks. Journal of Geophysical Research: Space Physics, 2013, 118, 5-16.	0.8	67
203	STOCHASTIC HEATING, DIFFERENTIAL FLOW, AND THE ALPHA-TO-PROTON TEMPERATURE RATIO IN THE SOLAR WIND. Astrophysical Journal, 2013, 776, 45.	1.6	50
204	Measurements of galactic cosmic ray shielding with the CRaTER instrument. Space Weather, 2013, 11, 284-296.	1.3	19
205	Science with the Murchison Widefield Array. Publications of the Astronomical Society of Australia, 2013, 30, .	1.3	260
206	The Murchison Widefield Array: The Square Kilometre Array Precursor at Low Radio Frequencies. Publications of the Astronomical Society of Australia, 2013, 30, .	1.3	892
207	Self-consistent ion cyclotron anisotropy-beta relation for solar wind protons. , 2013, , .		1
208	The EoR sensitivity of the Murchison Widefield Array. Monthly Notices of the Royal Astronomical Society: Letters, 2013, 429, L5-L9.	1.2	62
209	Contributions of Primary Particles to Observed LET for the CRaTER Instrument on LRO. , 2013, , .		1
210	The giant lobes of Centaurus A observed at 118 MHz with the Murchison Widefield Array. Monthly Notices of the Royal Astronomical Society, 2013, 436, 1286-1301.	1.6	19
211	LIMITS ON ALPHA PARTICLE TEMPERATURE ANISOTROPY AND DIFFERENTIAL FLOW FROM KINETIC INSTABILITIES: SOLAR WIND OBSERVATIONS. Astrophysical Journal Letters, 2013, 777, L3.	3.0	50
212	LOW-FREQUENCY OBSERVATIONS OF THE MOON WITH THE MURCHISON WIDEFIELD ARRAY. Astronomical Journal, 2013, 145, 23.	1.9	31
213	A 189 MHz, 2400 deg ² POLARIZATION SURVEY WITH THE MURCHISON WIDEFIELD ARRAY 32-ELEMENT PROTOTYPE. Astrophysical Journal, 2013, 771, 105.	1.6	79
214	ON THE DETECTION AND TRACKING OF SPACE DEBRIS USING THE MURCHISON WIDEFIELD ARRAY. I. SIMULATIONS AND TEST OBSERVATIONS DEMONSTRATE FEASIBILITY. Astronomical Journal, 2013, 146, 103.	1.9	34
215	Collisional Thermalization of Hydrogen and Helium in Solar-Wind Plasma. Physical Review Letters, 2013, 111, 241101.	2.9	40
216	The radiation environment near the lunar surface: CRaTER observations and Geant4 simulations. Space Weather, 2013, 11, 142-152.	1.3	28

#	Article	IF	CITATIONS
217	The Murchison Widefield Array: solar science with the low frequency SKA Precursor. Journal of Physics: Conference Series, 2013, 440, 012033.	0.3	15
218	Validation of PREDICCS using LRO/CRaTER observations during three major solar events in 2012. Space Weather, 2013, 11, 350-360.	1.3	21
219	The deep space galactic cosmic ray lineal energy spectrum at solar minimum. Space Weather, 2013, 11, 361-368.	1.3	18
220	The design, development, and implementation of a solar environmental simulator (SES) for the SAO Faraday Cup on Solar Probe Plus. Proceedings of SPIE, 2013, , .	0.8	2
221	Technology development for the Solar Probe Plus Faraday Cup. , 2013, , .		2
222	A STUDY OF FUNDAMENTAL LIMITATIONS TO STATISTICAL DETECTION OF REDSHIFTED H I FROM THE EPOCH OF REIONIZATION. Astrophysical Journal, 2013, 776, 6.	1.6	123
223	EVOLUTION OF THE RELATIONSHIPS BETWEEN HELIUM ABUNDANCE, MINOR ION CHARGE STATE, AND SOLAR WIND SPEED OVER THE SOLAR CYCLE. Astrophysical Journal, 2012, 745, 162.	1.6	96
224	INSTABILITY-DRIVEN LIMITS ON HELIUM TEMPERATURE ANISOTROPY IN THE SOLAR WIND: OBSERVATIONS AND LINEAR VLASOV ANALYSIS. Astrophysical Journal, 2012, 748, 137.	1.6	123
225	Observations of electromagnetic whistler precursors at supercritical interplanetary shocks. Geophysical Research Letters, 2012, 39, .	1.5	79
226	FAST HOLOGRAPHIC DECONVOLUTION: A NEW TECHNIQUE FOR PRECISION RADIO INTERFEROMETRY. Astrophysical Journal, 2012, 759, 17.	1.6	76
227	LOW-FREQUENCY IMAGING OF FIELDS AT HIGH GALACTIC LATITUDE WITH THE MURCHISON WIDEFIELD ARRAY 32 ELEMENT PROTOTYPE. Astrophysical Journal, 2012, 755, 47.	1.6	25
228	A new layout optimization technique for interferometric arrays, applied to the Murchison Widefield Array. Monthly Notices of the Royal Astronomical Society, 2012, 425, 1781-1788.	1.6	20
229	Observed and simulated LET spectra comparison for the CRaTER instrument on LRO. , 2012, , .		1
230	Interplanetary dust detection by radio antennas: Mass calibration and fluxes measured by STEREO/WAVES. Journal of Geophysical Research, 2012, 117, .	3.3	87
231	The first cosmic ray albedo proton map of the Moon. Journal of Geophysical Research, 2012, 117, .	3.3	12
232	Lunar radiation environment and space weathering from the Cosmic Ray Telescope for the Effects of Radiation (CRaTER). Journal of Geophysical Research, 2012, 117, .	3.3	67
233	Computer Vision for the Solar Dynamics Observatory (SDO). Solar Physics, 2012, 275, 79-113.	1.0	108
234	New measurements of total ionizing dose in the lunar environment. Space Weather, 2011, 9, .	1.3	45

#	Article	IF	CITATIONS
235	FIRST SPECTROSCOPIC IMAGING OBSERVATIONS OF THE SUN AT LOW RADIO FREQUENCIES WITH THE MURCHISON WIDEFIELD ARRAY PROTOTYPE. Astrophysical Journal Letters, 2011, 728, L27.	3.0	38
236	SOLAR CYCLE VARIATIONS IN THE ELEMENTAL ABUNDANCE OF HELIUM AND FRACTIONATION OF IRON IN THE FAST SOLAR WIND: INDICATORS OF AN EVOLVING ENERGETIC RELEASE OF MASS FROM THE LOWER SOLAR ATMOSPHERE. Astrophysical Journal Letters, 2011, 740, L23.	3.0	21
237	CORONAL ELECTRON TEMPERATURE FROM THE SOLAR WIND SCALING LAW THROUGHOUT THE SPACE AGE. Astrophysical Journal, 2011, 739, 9.	1.6	29
238	The Radio Observatory on the Lunar Surface for Solar studies. Advances in Space Research, 2011, 48, 1942-1957.	1.2	27
239	What Are the Relative Roles of Heating and Cooling in Generating Solar Wind Temperature Anisotropies?. Physical Review Letters, 2011, 107, 201101.	2.9	116
240	Murchison Widefield Array: Tracing solar disturbances from the Sun to the Earth. , 2011, , .		1
241	CRaTER: The Cosmic Ray Telescope for the Effects ofÂRadiation Experiment on the Lunar Reconnaissance Orbiter Mission. Space Science Reviews, 2010, 150, 243-284.	3.7	123
242	Heating of the solar wind with electron and proton effects. AIP Conference Proceedings, 2010, , .	0.3	3
243	Interferometric Imaging with the 32 Element Murchison Wide-Field Array. Publications of the Astronomical Society of the Pacific, 2010, 122, 1353-1366.	1.0	45
244	Langmuir waves upstream of interplanetary shocks: Dependence on shock and plasma parameters. Journal of Geophysical Research, 2010, 115, .	3.3	31
245	GCR access to the Moon as measured by the CRaTER instrument on LRO. Geophysical Research Letters, 2010, 37, .	1.5	9
246	Largeâ€amplitude electrostatic waves observed at a supercritical interplanetary shock. Journal of Geophysical Research, 2010, 115, .	3.3	77
247	The Murchison Widefield Array. , 2010, , .		4
248	Magnetic Fluctuation Power Near Proton Temperature Anisotropy Instability Thresholds in the Solar Wind. Physical Review Letters, 2009, 103, 211101.	2.9	371
249	The Murchison Widefield Array: Design Overview. Proceedings of the IEEE, 2009, 97, 1497-1506.	16.4	311
250	Plasma flows in the heliosheath. Geophysical Research Letters, 2009, 36, .	1.5	26
251	Are periodic solar wind number density structures formed in the solar corona?. Geophysical Research Letters, 2009, 36, .	1.5	36
252	Electron and proton heating by solar wind turbulence. Journal of Geophysical Research, 2009, 114, .	3.3	88

#	Article	IF	CITATIONS
253	Lowâ€frequency whistler waves and shocklets observed at quasiâ€perpendicular interplanetary shocks. Journal of Geophysical Research, 2009, 114, .	3.3	76
254	EMPIRICAL CONSTRAINTS ON PROTON AND ELECTRON HEATING IN THE FAST SOLAR WIND. Astrophysical Journal, 2009, 702, 1604-1614.	1.6	170
255	CRaTER: The Cosmic Ray Telescope for the Effects ofÂRadiation Experiment on the Lunar Reconnaissance Orbiter Mission. , 2009, , 243-284.		1
256	Solar cycle variations of solar wind dynamics and structures. Journal of Atmospheric and Solar-Terrestrial Physics, 2008, 70, 219-225.	0.6	18
257	Cool heliosheath plasma and deceleration of the upstream solar wind at the termination shock. Nature, 2008, 454, 63-66.	13.7	363
258	Hot Solar-Wind Helium: Direct Evidence for Local Heating by Alfvén-Cyclotron Dissipation. Physical Review Letters, 2008, 101, 261103.	2.9	177
259	Temperature Anisotropy in a Shocked Plasma: Mirror-Mode Instabilities in the Heliosheath. Astrophysical Journal, 2007, 659, L65-L68.	1.6	41
260	Waves in Interplanetary Shocks: A Wind/WAVES Study. Physical Review Letters, 2007, 99, 041101.	2.9	70
261	Field Deployment of Prototype Antenna Tiles for the Mileura Widefield Array Low Frequency Demonstrator. Astronomical Journal, 2007, 133, 1505-1518.	1.9	45
262	Determining the Magnetic Field Orientation of Coronal Mass Ejections from Faraday Rotation. Astrophysical Journal, 2007, 665, 1439-1447.	1.6	26
263	Solar Wind Helium Abundance as a Function of Speed and Heliographic Latitude: Variation through a Solar Cycle. Astrophysical Journal, 2007, 660, 901-910.	1.6	141
264	A scale-free analysis of magnetic holes at 1 AU. Journal of Geophysical Research, 2007, 112, n/a-n/a.	3.3	60
265	Solar and interplanetary sources of major geomagnetic storms (<i>Dst</i> ≤^`100 nT) during 1996–2005. Journal of Geophysical Research, 2007, 112, .	3.3	485
266	Correction to "Major geomagnetic storms (Dst≤a^100 nT) generated by corotating interaction regions― Journal of Geophysical Research, 2007, 112, n/a-n/a.	3.3	11
267	Lunar Reconnaissance Orbiter Overview: TheÂlnstrument Suite and Mission. Space Science Reviews, 2007, 129, 391-419.	3.7	322
268	Comment on "Interplanetary shocks unconnected with earthbound coronal mass ejections―by T. A. Howard and S. J. Tappin. Geophysical Research Letters, 2006, 33, .	1.5	2
269	Thermodynamic structure of collision-dominated expanding plasma: Heating of interplanetary coronal mass ejections. Journal of Geophysical Research, 2006, 111, .	3.3	54
270	Physics-based tests to identify the accuracy of solar wind ion measurements: A case study with the Wind Faraday Cups. Journal of Geophysical Research, 2006, 111, .	3.3	115

#	Article	IF	CITATIONS
271	Major geomagnetic storms (Dstâ‰堨^'100 nT) generated by corotating interaction regions. Journal of Geophysical Research, 2006, 111, .	3.3	159
272	Plasma depletion and mirror waves ahead of interplanetary coronal mass ejections. Journal of Geophysical Research, 2006, 111, .	3.3	52
273	Constraints on the global structure of magnetic clouds: Transverse size and curvature. Journal of Geophysical Research, 2006, 111, .	3.3	145
274	Solar wind proton temperature anisotropy: Linear theory and WIND/SWE observations. Geophysical Research Letters, 2006, 33, .	1.5	378
275	Correlation between energetic ion enhancements and heliospheric current sheet crossings in the outer heliosphere. Geophysical Research Letters, 2006, 33, .	1.5	14
276	Solar Imaging Radio Array (SIRA): a multispacecraft mission. , 2005, 5659, 284.		5
277	Space weather capabilities of low frequency radio arrays. , 2005, , .		10
278	Propagation of the October/November 2003 CMEs through the heliosphere. Geophysical Research Letters, 2005, 32, .	1.5	61
279	Interplanetary coronal mass ejection and ambient interplanetary magnetic field correlations during the Sun-Earth connection events of October-November 2003. Journal of Geophysical Research, 2005, 110, .	3.3	22
280	LOFAR: The potential for solar and space weather studies. Planetary and Space Science, 2004, 52, 1415-1421.	0.9	11
281	Wind observations of extreme ion temperature anisotropies in the lunar wake. Geophysical Research Letters, 2004, 31, n/a-n/a.	1.5	39
282	Storm-time distortion of the inner magnetosphere: How severe can it get?. Journal of Geophysical Research, 2003, 108, .	3.3	210
283	Solar Wind Temperature Anisotropies. AIP Conference Proceedings, 2003, , .	0.3	41
284	Wind/SWE observations of firehose constraint on solar wind proton temperature anisotropy. Geophysical Research Letters, 2002, 29, 20-1-20-4.	1.5	237
285	Geomagnetic disturbances and their relationship to Interplanetary shock parameters. Geophysical Research Letters, 2002, 29, 101-1-101-4.	1.5	27
286	The Bastille day Magnetic Clouds and Upstream Shocks: Near-Earth Interplanetary Observations. Solar Physics, 2001, 204, 285-303.	1.0	71
287	Rapid Measurements of Solar Wind Ions with the Triana PlasMag Faraday Cup. Astrophysics and Space Science, 2001, 277, 305-307.	0.5	5
288	Rapid Measurements of Solar Wind Ions with the Triana Plasmag Faraday Cup. , 2001, , 305-307.		0

#	Article	IF	CITATIONS
289	Revolutionizing Our Understanding of Particle Energization in Space Plasmas Using On-Board Wave-Particle Correlator Instrumentation. Frontiers in Astronomy and Space Sciences, 0, 9, .	1.1	1