Shashi Paul

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5783030/publications.pdf

Version: 2024-02-01

471509 361022 1,359 83 17 35 citations h-index g-index papers 86 86 86 1735 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Langmuirâ^'Blodgett Film Deposition of Metallic Nanoparticles and Their Application to Electronic Memory Structures. Nano Letters, 2003, 3, 533-536.	9.1	279
2	Memory effect in thin films of insulating polymer and C60 nanocomposites. Nanotechnology, 2006, 17, 145-151.	2.6	153
3	Hybrid silicon–organic nanoparticle memory device. Journal of Applied Physics, 2003, 94, 5234.	2.5	96
4	Rational design on materials for developing next generation lithium-ion secondary battery. Progress in Solid State Chemistry, 2021, 62, 100298.	7.2	80
5	Overview of organic memory devices. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2009, 367, 4141-4157.	3.4	70
6	Investigation of optical properties of nickel oxide thin films deposited on different substrates. Applied Surface Science, 2015, 352, 10-15.	6.1	52
7	Realization of Nonvolatile Memory Devices Using Small Organic Molecules and Polymer. IEEE Nanotechnology Magazine, 2007, 6, 191-195.	2.0	42
8	Lanthanide Oxide Thin Films by Metalorganic Chemical Vapor Deposition Employing Volatile Guanidinate Precursors. Chemistry of Materials, 2009, 21, 5443-5455.	6.7	41
9	Sc2O3, Er2O3, and Y2O3 thin films by MOCVD from volatile guanidinate class of rare-earth precursors. Dalton Transactions, 2012, 41, 13936.	3.3	40
10	A new application of high-efficient silver salts-based photocatalyst under natural indoor weak light for wastewater cleaning. Water Research, 2015, 81, 366-374.	11.3	39
11	Gold nanoparticle charge trapping and relation to organic polymer memory devices. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2009, 367, 4215-4225.	3.4	29
12	Electrical and morphological properties of polystyrene thin films for organic electronic applications. Vacuum, 2010, 84, 1240-1243.	3.5	26
13	To Be or Not to Be – Review of Electrical Bistability Mechanisms in Polymer Memory Devices. Small, 2022, 18, e2106442.	10.0	26
14	Porous Ag3PO4 microtubes with improved photocatalytic properties. Catalysis Communications, 2014, 52, 49-52.	3.3	23
15	Electrical bistability in a composite of polymer and barium titanate nanoparticles. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2009, 367, 4227-4234.	3.4	21
16	Schottky barrier formation on r.fplasma enhanced chemical vapour deposited hydrogenated amorphous carbon. Diamond and Related Materials, 1998, 7, 1734-1738.	3.9	17
17	Memory devices based on small organic molecules donor-acceptor system. Thin Solid Films, 2010, 519, 559-562.	1.8	17
18	Electrical properties of nanometre thin film polystyrene for organic electronic applications. IEEE Transactions on Dielectrics and Electrical Insulation, 2008, 15, 905-909.	2.9	16

#	Article	IF	CITATIONS
19	Nanoscale patterning of gold nanoparticles using an atomic force microscope. Materials Science and Engineering C, 2005, 25, 33-38.	7.3	14
20	Growth of low temperature silicon nano-structures for electronic and electrical energy generation applications. Nanoscale Research Letters, 2013, 8, 83.	5.7	13
21	In-situ catalyst mediated growth and self-doped silicon nanowires for use in nanowire solar cells. Vacuum, 2017, 139, 178-184.	3.5	13
22	Inkjet Printing of Functional Electronic Memory Cells: A Step Forward to Green Electronics. Micromachines, 2019, 10, 417.	2.9	13
23	Gold Nanoparticle Based Electrically Rewritable Polymer Memory Devices. Advances in Science and Technology, 0, , .	0.2	12
24	First contact-charging of gold nanoparticles by electrostatic force microscopy. Applied Physics Letters, 2010, 96, 043120.	3.3	12
25	A new approach for two-terminal electronic memory devices - Storing information on silicon nanowires. Scientific Reports, 2016, 6, 27506.	3.3	11
26	Stability of hydrogenated amorphous carbon thin films for application in electronic devices. Diamond and Related Materials, 2018, 90, 172-180.	3.9	11
27	Binder-free Sn–Si heterostructure films for high capacity Li-ion batteries. RSC Advances, 2018, 8, 16726-16737.	3.6	11
28	Stability study: Transparent conducting oxides in chemically reactive plasmas. Applied Surface Science, 2017, 424, 316-323.	6.1	10
29	Single step ohmic contact for heavily doped n-type silicon. Applied Surface Science, 2020, 506, 144686.	6.1	10
30	Rare-earth substituted HfO2 thin films grown by metalorganic chemical vapor deposition. Thin Solid Films, 2012, 520, 4512-4517.	1.8	9
31	Carrier selective metal-oxides for self-doped silicon nanowire solar cells. Applied Surface Science, 2019, 492, 856-861.	6.1	9
32	Electronic polymer memory devicesâ€"Easy to fabricate, difficult to understand. Thin Solid Films, 2010, 519, 587-590.	1.8	8
33	A study of selenium nanoparticles as charge storage element for flexible semi-transparent memory devices. Applied Surface Science, 2017, 424, 330-336.	6.1	8
34	Organic Memory Devices Using C ₆₀ and Insulating Polymer. Materials Research Society Symposia Proceedings, 2004, 830, 338.	0.1	7
35	Instability measurements in amorphous hydrogenated silicon using capacitance-voltage techniques. Applied Physics Letters, 2005, 86, 202110.	3.3	7
36	Small Organic Molecules for Electrically Re-writable Non-volatile Polymer Memory Devices. Materials Research Society Symposia Proceedings, 2010, 1250, 1.	0.1	7

#	Article	IF	Citations
37	Substrate Sensitivity of the Adhesion and Material Properties of RF-PECVD Amorphous Carbon. Materials Research Society Symposia Proceedings, 1999, 558, 149.	0.1	6
38	Making Plastic Remember: Electrically Rewritable Polymer Memory Devices. Materials Research Society Symposia Proceedings, 2007, 997, 1.	0.1	6
39	Electrically Re-Writable Non-Volatile Memory Device - Using a Blend of Sea Salt and Polymer. Advances in Science and Technology, 2008, 54, 486-490.	0.2	6
40	Rare-Earth Based Oxide and Nitride Thin Films Employing Volatile Homoleptic Guanidinate Precursors. ECS Transactions, 2009, 25, 143-150.	0.5	6
41	Schottky contacts on amorphous carbon: A more reliable approach. Applied Physics Letters, 2001, 78, 1415-1417.	3.3	5
42	Field effect devices with metal nanoparticles integrated by Langmuir–Blodgett technique for non-volatile memory applications. Journal of Physics: Conference Series, 2005, 10, 57-60.	0.4	5
43	Ferroelectric Nanoparticles in Polyvinyl Acetate (PVAc) Matrix—A Method to Enhance the Dielectric Constant of Polymers. Nanoscience and Nanotechnology Letters, 2010, 2, 41-45.	0.4	5
44	Statistical analysis of multiple access interference in Rayleigh fading environment for MIMO CDMA systems. , 2014, , .		5
45	Creating Electrical Bistability Using Nano-bits — Application in 2-Terminal Memory Devices. MRS Advances, 2017, 2, 195-208.	0.9	5
46	e-Information on Wires: A First Step toward Two-Terminal Silicon Nanowires for Electronic Memory Devices. ACS Applied Electronic Materials, 2019, 1, 2018-2024.	4.3	5
47	Charge-Trap-Non-volatile Memory and Focus on Flexible Flash Memory Devices. , 2017, , 55-89.		5
48	Determination of Density of States in Amorphous Carbon. IEEE Transactions on Electron Devices, 2006, 53, 1775-1781.	3.0	4
49	(Invited) Electrical Conductivity Bistability in Nano-Composite. ECS Transactions, 2013, 53, 141-148.	0.5	4
50	Route to enhance the efficiency of organic photovoltaic solar cells - by adding ferroelectric nanoparticles to P3HT/PCBM admixture. EPJ Photovoltaics, 2014, 5, 50403.	1.6	4
51	Capacitance-Voltage Analysis of ZrO2 Thin Films Deposited by Thermal MOCVD Technique. ECS Transactions, 2009, 25, 901-907.	0.5	3
52	Design of MAI constrained decision feedback equalizer for MIMO CDMA system. , 2011, , .		3
53	Two Terminal Non-Volatile Memory Devices Using Diamond-Like Carbon and Silicon Nanostructures. Advances in Science and Technology, 2014, 95, 100-106.	0.2	3
54	Zinc oxide nanowires for biosensor applications. Proceedings of SPIE, 1899, 8414, 68.	0.8	2

#	Article	IF	CITATIONS
55	A technique to investigate inhomogeneity in materials: An arrangement of microtip and scanning electron microscope. Review of Scientific Instruments, 2001, 72, 3543-3545.	1.3	2
56	A reliability of different metal contacts with amorphous carbon. Microelectronics Reliability, 2002, 42, 141-143.	1.7	2
57	Effect of DC self-bias on the adhesion of diamond-like carbon deposited on metal tracks by RF-PECVD. IET Science, Measurement and Technology, 2006, 153, 164-167.	0.7	2
58	High Mobility ZnO thin film transistors using the novel deposition of high-k dielectrics. Materials Research Society Symposia Proceedings, 2011, 1315, 1.	0.1	2
59	Memory Effect of a Different Materials as Charge Storage Elements for Memory Applications. Advances in Science and Technology, 0, , .	0.2	2
60	Two-Terminal Non-Volatile Memory Devices Using Silicon Nanowires as the Storage Medium. Advances in Science and Technology, 2014, 95, 78-83.	0.2	2
61	Bayesian Estimation of Density via Multiple Sequential Inversions of Two-Dimensional Images With Application to Electron Microscopy. Technometrics, 2015, 57, 217-233.	1.9	2
62	Wire-bar coating of doped Nickle oxide thin films from metal organic compounds. Applied Surface Science, 2019, 488, 903-910.	6.1	2
63	Comparative Study of Silicon Nanowires Grown From Ga, In, Sn, and Bi for Energy Harvesting. IEEE Journal of Photovoltaics, 2020, 10, 1667-1674.	2.5	2
64	Storing Electronic information on Semi-Metal Nanoparticles. Materials Advances, 0, , .	5.4	2
65	Use of amorphous carbon as a gate insulator for GaAs and related compounds. Microelectronic Engineering, 2003, 70, 78-82.	2.4	1
66	3-D Printing of Flexible Two Terminal Electronic Memory Devices. MRS Advances, 2018, 3, 1603-1608.	0.9	1
67	Bistability in Electrically Writable Non-Volatile Polymer Memory Devices. , 2008, , .		1
68	Gold Nanoparticle Based Electrically Rewritable Polymer Memory Devices. Advances in Science and Technology, 0, , 480-485.	0.2	1
69	Integration of organic insulator and self-assembled gold nanoparticles on Si MOSFET for novel non-volatile memory cells. Microelectronic Engineering, 2004, 73-74, 725-729.	2.4	1
70	Pattern Formation by Changing V/III Ratio During Growth of GaAs by Movpe. Materials Research Society Symposia Proceedings, 1995, 417, 153.	0.1	0
71	High Reverse Breakdown a-C:H/Si Diodes Manufactured by rf-PECVD. Materials Research Society Symposia Proceedings, 1999, 593, 427.	0.1	0
72	A multi-stack insulator silicon-organic memory device with gold nanoparticles. , 0, , .		0

#	Article	IF	CITATIONS
73	Substrate selection for the infra-red analysis in amorphous hydrogenated carbon films. Materials Letters, 2007, 61, 2638-2640.	2.6	o
74	A Novel Method for the growth of Low Temperature Silicon Structures for 3-D Flash Memory Devices. Materials Research Society Symposia Proceedings, 2008, 1112, 1.	0.1	0
75	Optimising the Low Temperature Growth of Uniform ZnO Nanowires. Materials Research Society Symposia Proceedings, 2009, 1201, 260.	0.1	O
76	Low Temperature Growth of Silicon Structures for Application in Flash Memory Devices. Materials Research Society Symposia Proceedings, 2010, 1250, 1.	0.1	0
77	Photoconductivity Measurements of Organic Polymer/Nanostructure Blends. Materials Research Society Symposia Proceedings, 2010, 1270, 1.	0.1	O
78	Fabrication of Photovoltaic Devices using Novel Organic Polymer/Nanostructure Blends. Materials Research Society Symposia Proceedings, 2011, 1303, 75.	0.1	0
79	Switching in Polymer Memory Devices Based on Polymer and Nanoparticles Admixture. Advances in Science and Technology, 2014, 95, 107-112.	0.2	O
80	Substrate selection for the optical analysis of nickel oxide thin films. , 2014, , .		0
81	Birth of silicon nanowires covered with protective insulating blanket. MRS Communications, 2017, 7, 854-861.	1.8	O
82	Nanostructures of ZnO as Elements in Inorganic/Organic Hybrid Electrically Writable Memory Devices. , 2008, , .		0
83	A Study in Pursuit of Precise Substrate Selection for Infrared Spectroscopy Analysis of Diamond-Like Carbon Films. , 2016, , .		O