Hong-Son Chu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5782651/publications.pdf

Version: 2024-02-01

315616 394286 2,357 55 19 38 citations g-index h-index papers 56 56 56 3211 times ranked docs citations citing authors all docs

#	Article	IF	CITATIONS
1	CMOSâ€Compatible Electronic–Plasmonic Transducers Based on Plasmonic Tunnel Junctions and Schottky Diodes. Small, 2022, 18, e2105684.	5.2	9
2	Variational Quantum-Based Simulation of Waveguide Modes. IEEE Transactions on Microwave Theory and Techniques, 2022, 70, 2517-2525.	2.9	6
3	Spatial Control over Stable Lightâ€Emission from ACâ€Driven CMOSâ€Compatible Quantum Mechanical Tunnel Junctions. Laser and Photonics Reviews, 2022, 16, .	4.4	7
4	Geometric control over surface plasmon polariton out-coupling pathways in metal-insulator-metal tunnel junctions. Optics Express, 2021, 29, 11987.	1.7	6
5	Directional launching of surface plasmon polaritons by electrically driven aperiodic groove array reflectors. Nanophotonics, 2021, 10, 1145-1154.	2.9	12
6	Optical Anisotropy in van der Waals materials: Impact on Direct Excitation of Plasmons and Photons by Quantum Tunneling. Light: Science and Applications, 2021, 10, 230.	7.7	7
7	Low loss waveguiding and slow light modes in coupled subwavelength silicon Mie resonators. Nanoscale, 2020, 12, 21713-21718.	2.8	13
8	Collective Mie Resonances for Directional On-Chip Nanolasers. Nano Letters, 2020, 20, 5655-5661.	4.5	37
9	Efficient Surface Plasmon Polariton Excitation and Control over Outcoupling Mechanisms in Metal–Insulator–Metal Tunneling Junctions. Advanced Science, 2020, 7, 1900291.	5.6	32
10	Directional Excitation of Surface Plasmon Polaritons via Molecular Through-Bond Tunneling across Double-Barrier Tunnel Junctions. Nano Letters, 2019, 19, 4634-4640.	4.5	21
11	Nanoparticle Interactions Guided by Shapeâ€Dependent Hydrophobic Forces. Advanced Materials, 2018, 30, e1707077.	11.1	42
12	Numerical Simulation on Thermal Response for Dynamic Non-Destructive Detection of Weak Bonds in Carbon Fiber Reinforced Polymer. , 2018, , .		0
13	Highly efficient on-chip direct electronic–plasmonic transducers. Nature Photonics, 2017, 11, 623-627.	15.6	124
14	Efficiently coupling single photon source to plasmonic nanoslot waveguide by nanoantenna., 2017,,.		0
15	On-chip molecular electronic plasmon sources based on self-assembled monolayer tunnel junctions. Nature Photonics, 2016, 10, 274-280.	15.6	110
16	On-chip high performance plasmonic-CMOS components based on horizontal hybrid Cu-SiO2-Si platform. , 2016, , .		1
17	Electrically-Excited Surface Plasmon Polaritons with Directionality Control. ACS Photonics, 2015, 2, 385-391.	3.2	34
18	Second-Harmonic Generation from Sub-5 nm Gaps by Directed Self-Assembly of Nanoparticles onto Template-Stripped Gold Substrates. Nano Letters, 2015, 15, 5976-5981.	4. 5	86

#	Article	IF	Citations
19	Quantum Plasmon Resonances Controlled by Molecular Tunnel Junctions. Science, 2014, 343, 1496-1499.	6.0	388
20	Image Dipole Method for the Beaming of Plasmons from Point Sources. ACS Photonics, 2014, 1, 1307-1312.	3.2	7
21	Active plasmonic switching at mid-infrared wavelengths with graphene ribbon arrays. Applied Physics Letters, 2013, 102, .	1.5	110
22	CMOS-Compatible Plasmonic Bragg Reflectors Based on Cu-Dielectric-Si Structures. IEEE Photonics Technology Letters, 2013, 25, 2115-2118.	1.3	3
23	Submicrometer radius and highly confined plasmonic ring resonator filters based on hybrid metal-oxide-semiconductor waveguide. Optics Letters, 2012, 37, 4564.	1.7	36
24	Waveguide-integrated near-infrared detector with self-assembled metal silicide nanoparticles embedded in a silicon p-n junction. Applied Physics Letters, 2012, 100, 061109.	1.5	41
25	Integrated System-Level Electronic Design Automation (EDA) for Designing Plasmonic Nanocircuits. IEEE Nanotechnology Magazine, 2012, 11, 731-738.	1.1	4
26	Plasmon–plasmon interaction: controlling light at nanoscale. Nanotechnology, 2012, 23, 444004.	1.3	15
27	Controlling light with plasmon-plasmon interaction. , 2012, , .		0
28	Compact and efficient coupler to interface hybrid dielectric-loaded plasmonic waveguide with silicon photonic slab waveguide. Optics Communications, 2012, 285, 3709-3713.	1.0	13
29	CMOS-compatible Plasmonic Waveguide Platform and Ring Resonator for Nanoscale Electronic-photonic Integrated Circuits. , 2012 , , .		0
30	Characterization of planar hybrid dielectric-loaded plasmonic nano-waveguides used for nano-photonic circuits. , 2011 , , .		1
31	Plasmon coupling effect on propagation of surface plasmon polaritons at a continuous metal/dielectric interface. Physical Review B, $2011,83,.$	1.1	10
32	Hybrid dielectric-loaded plasmonic waveguide and wavelength selective components for efficiently controlling light at subwavelength scale. Journal of the Optical Society of America B: Optical Physics, 2011, 28, 2895.	0.9	33
33	Hybrid Dielectric-Loaded Plasmonic Waveguide-Based Power Splitter and Ring Resonator: Compact Size and High Optical Performance for Nanophotonic Circuits. Plasmonics, 2011, 6, 591-597.	1.8	46
34	Field enhancement by semi-nanocapsule plasmonic antenna atÂtheÂvisible violet wavelength. Applied Physics A: Materials Science and Processing, 2010, 100, 353-357.	1.1	2
35	Highly sensitive graphene biosensors based on surface plasmon resonance. Optics Express, 2010, 18, 14395.	1.7	799
36	Resonant coupling of surface and bulk plasmon polaritons in metallic nanostructures. , 2010, , .		0

#	Article	IF	Citations
37	Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components. Applied Physics Letters, 2010, 96, .	1.5	143
38	Tunable propagation of light through a coupled-bent dielectric-loaded plasmonic waveguides. Journal of Applied Physics, 2009, 106, 106101.	1.1	12
39	Controlling light in different structures of dielectric-loaded plasmonic waveguide. , 2009, , .		O
40	Remarkable influence of the number of nanowires on plasmonic behaviors of the coupled metallic nanowire chain. Applied Physics Letters, 2008, 92, 103103.	1.5	32
41	Guiding light in different plasmoic nano-slot waveguides for nano-interconnect application. , 2008, , .		0
42	Investigation of light propagation in H-shaped plasmonic coupler using volume integral equation. , 2008, , .		0
43	Optical properties of a single-chain of elliptical silver nanowires. , 2007, , .		1
44	Analysis of sub-wavelength light propagation through long double-chain nanowires with funnel feeding. Optics Express, 2007, 15, 4216.	1.7	33
45	Volume integral equation analysis of surface plasmon resonance of nanoparticles. Optics Express, 2007, 15, 18200.	1.7	22
46	Investigation of Surface Plasmon Resonance of Nanoparticles using Volume Integral Equation. , 2007, , .		1
47	AIM Analysis of Electromagnetic Scattering by Arbitrarily Shaped Magnetodielectric Object. IEEE Transactions on Antennas and Propagation, 2007, 55, 2073-2079.	3.1	14
48	Modeling and Simulation of Nano-Interconnects for Nanophotonics. , 2007, , .		2
49	Time-Domain Analysis with Self-Optimizing Prony Predictor for Accelerated Field-Based Design. , 2007, ,		0
50	Enhancement of time domain analysis and optimization through neural networks. International Journal of RF and Microwave Computer-Aided Engineering, 2007, 17, 179-188.	0.8	6
51	Design of microwave structures with MEFISTO-3D NOVA and MATLAB optimization and neural network toolboxes. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 2007, 20, 55-64.	1.2	3
52	Coupled computational intelligence and time-domain method for design of the microwave devices. , 2006, , .		1
53	Shape optimization of multi-band antennas using the coupling between microgenetic algorithms and TLM method. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 2004, 17, 193-205.	1.2	3
54	Optimization of microwave structures with MEFISTO-3D NOVA and MATLAB., 0, , .		0

ARTICLE IF CITATIONS

Passive plasmonic waveguide-based devices., 0,, 139-179.

L