Sotirios C Kampranis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/578258/publications.pdf

Version: 2024-02-01

56 papers 3,576 citations

32 h-index 55 g-index

57 all docs

57 docs citations

57 times ranked

4165 citing authors

#	Article	IF	CITATIONS
1	A GPCR-based yeast biosensor for biomedical, biotechnological, and point-of-use cannabinoid determination. Nature Communications, 2022, 13, .	5.8	17
2	Collagen-Containing Fish Sidestream-Derived Protein Hydrolysates Support Skin Repair via Chemokine Induction. Marine Drugs, 2021, 19, 396.	2.2	6
3	Transforming yeast peroxisomes into microfactories for the efficient production of high-value isoprenoids. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 31789-31799.	3.3	108
4	Disulfides from the Brown Alga Dictyopteris membranacea Suppress M1 Macrophage Activation by Inducing AKT and Suppressing MAPK/ERK Signaling Pathways. Marine Drugs, 2020, 18, 527.	2.2	5
5	The histone demethylase KDM2B activates FAK and PI3K that control tumor cell motility. Cancer Biology and Therapy, 2020, 21, 533-540.	1.5	8
6	Integrating pathway elucidation with yeast engineering to produce polpunonic acid the precursor of the anti-obesity agent celastrol. Microbial Cell Factories, $2020,19,15.$	1.9	29
7	Identification of Structural Elements of the Lysine Specific Demethylase 2B CxxC Domain Associated with Replicative Senescence Bypass in Primary Mouse Cells. Protein Journal, 2020, 39, 232-239.	0.7	3
8	Diatom isoprenoids: Advances and biotechnological potential. Biotechnology Advances, 2019, 37, 107417.	6.0	25
9	Orthogonal monoterpenoid biosynthesis in yeast constructed on an isomeric substrate. Nature Communications, 2019, 10, 3799.	5.8	71
10	Neorogioltriol and Related Diterpenes from the Red Alga Laurencia Inhibit Inflammatory Bowel Disease in Mice by Suppressing M1 and Promoting M2-Like Macrophage Responses. Marine Drugs, 2019, 17, 97.	2.2	22
11	The application of the CRISPR-Cas9 genome editing machinery in food and agricultural science: Current status, future perspectives, and associated challenges. Biotechnology Advances, 2019, 37, 410-421.	6.0	74
12	Thuwalallenes A–E and Thuwalenynes A–C: New C15 Acetogenins with Anti-Inflammatory Activity from a Saudi Arabian Red Sea Laurencia sp Marine Drugs, 2019, 17, 644.	2.2	9
13	Isoprenoid biosynthesis in the diatom Haslea ostrearia. New Phytologist, 2019, 222, 230-243.	3.5	16
14	Engineered protein degradation of farnesyl pyrophosphate synthase is an effective regulatory mechanism to increase monoterpene production in Saccharomyces cerevisiae. Metabolic Engineering, 2018, 47, 83-93.	3.6	89
15	Histone methylation and acetylation in macrophages as a mechanism for regulation of inflammatory responses. Journal of Cellular Physiology, 2018, 233, 6495-6507.	2.0	104
16	The epigenetic factor KDM2B regulates cell adhesion, small rho GTPases, actin cytoskeleton and migration in prostate cancer cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2018, 1865, 587-597.	1.9	23
17	Synthesis of 11-carbon terpenoids in yeast using protein and metabolic engineering. Nature Chemical Biology, 2018, 14, 1090-1098.	3.9	75
18	The Epigenetic Factor KDM2B Regulates EMT and Small GTPases in Colon Tumor Cells. Cellular Physiology and Biochemistry, 2018, 47, 368-377.	1.1	18

#	Article	IF	CITATIONS
19	Phototrophic production of heterologous diterpenoids and a hydroxy-functionalized derivative from Chlamydomonas reinhardtii. Metabolic Engineering, 2018, 49, 116-127.	3.6	91
20	Epigenetic and Transcriptional Regulation of IRAK-M Expression in Macrophages. Journal of Immunology, 2017, 198, 1297-1307.	0.4	30
21	Overcoming the plasticity of plant specialized metabolism for selective diterpene production in yeast. Scientific Reports, 2017, 7, 8855.	1.6	16
22	Production of the forskolin precursor $11\hat{1}^2$ -hydroxy-manoyl oxide in yeast using surrogate enzymatic activities. Microbial Cell Factories, 2016, 15, 46.	1.9	18
23	Carnosic acid biosynthesis elucidated by a synthetic biology platform. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3681-3686.	3.3	115
24	Disulfides with Anti-inflammatory Activity from the Brown Alga <i>Dictyopteris membranacea</i> Journal of Natural Products, 2016, 79, 584-589.	1.5	20
25	Combined metabolome and transcriptome profiling provides new insights into diterpene biosynthesis in S. pomifera glandular trichomes. BMC Genomics, 2015, 16, 935.	1.2	43
26	Towards Elucidating Carnosic Acid Biosynthesis in Lamiaceae: Functional Characterization of the Three First Steps of the Pathway in Salvia fruticosa and Rosmarinus officinalis. PLoS ONE, 2015, 10, e0124106.	1.1	67
27	Reconstructing the chemical diversity of labdane-type diterpene biosynthesis in yeast. Metabolic Engineering, 2015, 28, 91-103.	3.6	66
28	Iterative carotenogenic screens identify combinations of yeast gene deletions that enhance sclareol production. Microbial Cell Factories, 2015, 14, 60.	1.9	51
29	Use of the de novo transcriptome analysis of silver-leaf nightshade (Solanum elaeagnifolium) to identify gene expression changes associated with wounding and terpene biosynthesis. BMC Genomics, 2015, 16, 504.	1.2	24
30	Coordinated Regulation of miR-155 and miR-146a Genes during Induction of Endotoxin Tolerance in Macrophages. Journal of Immunology, 2015, 195, 5750-5761.	0.4	70
31	Efficient diterpene production in yeast by engineering Erg20p into a geranylgeranyl diphosphate synthase. Metabolic Engineering, 2015, 27, 65-75.	3.6	101
32	The Downregulation of GFI1 by the EZH2-NDY1/KDM2B-JARID2 Axis and by Human Cytomegalovirus (HCMV) Associated Factors Allows the Activation of the HCMV Major IE Promoter and the Transition to Productive Infection. PLoS Pathogens, 2014, 10, e1004136.	2.1	16
33	Engineering Monoterpene Production in Yeast Using a Synthetic Dominant Negative Geranyl Diphosphate Synthase. ACS Synthetic Biology, 2014, 3, 298-306.	1.9	178
34	Positive genetic interactors of HMG2 identify a new set of genetic perturbations for improving sesquiterpene production in Saccharomyces cerevisiae. Microbial Cell Factories, 2012, 11, 162.	1.9	48
35	DEVELOPING A YEAST CELL FACTORY FOR THE PRODUCTION OF TERPENOIDS. Computational and Structural Biotechnology Journal, 2012, 3, e201210006.	1.9	59
36	FGF-2 Regulates Cell Proliferation, Migration, and Angiogenesis through an NDY1/KDM2B-miR-101-EZH2 Pathway. Molecular Cell, 2011, 43, 285-298.	4.5	213

#	Article	IF	CITATIONS
37	Improving yeast strains using recyclable integration cassettes, for the production of plant terpenoids. Microbial Cell Factories, 2011, 10, 4.	1.9	100
38	Abstract 108: FGF-2 regulates cell proliferation, migration and angiogenesis through a novel NDY1/KDM2B-miR101-EZH2 pathway. , $2011, \dots$		1
39	Chapter 4 Histone Demethylases and Cancer. Advances in Cancer Research, 2009, 102, 103-169.	1.9	57
40	Ndy1/KDM2B immortalizes mouse embryonic fibroblasts by repressing the <i>Ink4a</i> / <i>Arf</i> locus. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 2641-2646.	3.3	123
41	Antioxidant Small Molecules Confer Variable Protection against Oxidative Damage in Yeast Mutants. Journal of Agricultural and Food Chemistry, 2008, 56, 11740-11751.	2.4	32
42	Members of a family of JmjC domain-containing oncoproteins immortalize embryonic fibroblasts via a JmjC domain-dependent process. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 1907-1912.	3.3	116
43	Old Yellow Enzymes, Highly Homologous FMN Oxidoreductases with Modulating Roles in Oxidative Stress and Programmed Cell Death in Yeast. Journal of Biological Chemistry, 2007, 282, 36010-36023.	1.6	61
44	Rational Conversion of Substrate and Product Specificity in a Salvia Monoterpene Synthase: Structural Insights into the Evolution of Terpene Synthase Function. Plant Cell, 2007, 19, 1994-2005.	3.1	204
45	A Chromatin-Associated Histone H3 Dementhylase Promotes the Immortalization of MEFs and the Cycling of HSC-Like Cells in Culture Blood, 2007, 110, 96-96.	0.6	0
46	Differential Roles of Tau Class Glutathione S-Transferases in Oxidative Stress. Journal of Biological Chemistry, 2004, 279, 24540-24551.	1.6	108
47	Yeast mutants resistant to Bax lethality reveal distinct vacuolar and mitochondrial alterations. Cell Death and Differentiation, 2004, 11, 946-948.	5.0	9
48	Expression of Bax in yeast affects not only the mitochondria but also vacuolar integrity and intracellular protein traffic. FEBS Letters, 2004, 566, 100-104.	1.3	14
49	A Novel Plant Glutathione S-Transferase/Peroxidase Suppresses Bax Lethality in Yeast. Journal of Biological Chemistry, 2000, 275, 29207-29216.	1.6	211
50	A model for the mechanism of strand passage by DNA gyrase. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 8414-8419.	3.3	138
51	Probing the Binding of Coumarins and Cyclothialidines to DNA Gyraseâ€. Biochemistry, 1999, 38, 1967-1976.	1.2	94
52	The interaction of DNA gyrase with the bacterial toxin CcdB: evidence for the existence of two gyrase-CcdB complexes 1 1Edited by I. B. Holland. Journal of Molecular Biology, 1999, 293, 733-744.	2.0	40
53	Hydrolysis of ATP at Only One GyrB Subunit Is Sufficient to Promote Supercoiling by DNA Gyrase. Journal of Biological Chemistry, 1998, 273, 26305-26309.	1.6	27
54	The DNA Gyrase-Quinolone Complex. Journal of Biological Chemistry, 1998, 273, 22615-22626.	1.6	105

SOTIRIOS C KAMPRANIS

#	Article	IF	CITATIONS
55	Conformational Changes in DNA Gyrase Revealed by Limited Proteolysis. Journal of Biological Chemistry, 1998, 273, 22606-22614.	1.6	55
56	Conversion of DNA gyrase into a conventional type II topoisomerase. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 14416-14421.	3.3	151