
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/57825/publications.pdf Version: 2024-02-01

FRIC | RUBIN

#	Article	IF	CITATIONS
1	A disclosure form for work submitted to medical journals: a proposal from the International Committee of Medical Journal Editors. Lancet, The, 2022, 399, e15-e16.	6.3	0
2	Call for emergency action to limit global temperature increases, restore biodiversity and protect health. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 730-733.	2.7	7
3	Addressing Vaccine Inequity — Covid-19 Vaccines as a Global Public Good. New England Journal of Medicine, 2022, 386, 1176-1179.	13.9	70
4	Chemical–genetic interaction mapping links carbon metabolism and cell wall structure to tuberculosis drug efficacy. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2201632119.	3.3	20
5	Anti-tuberculosis treatment strategies and drug development: challenges and priorities. Nature Reviews Microbiology, 2022, 20, 685-701.	13.6	142
6	A tRNA-Acetylating Toxin and Detoxifying Enzyme in Mycobacterium tuberculosis. Microbiology Spectrum, 2022, 10, .	1.2	4
7	Nonredundant functions of <i>Mycobacterium tuberculosis</i> chaperones promote survival under stress. Molecular Microbiology, 2021, 115, 272-289.	1.2	14
8	ClpX Is Essential and Activated by Single-Strand DNA Binding Protein in Mycobacteria. Journal of Bacteriology, 2021, 203, .	1.0	6
9	Call for Emergency Action to Limit Global Temperature Increases, Restore Biodiversity, and Protect Health. International Journal of Integrated Care, 2021, 21, 8.	0.1	4
10	The Conserved Translation Factor LepA Is Required for Optimal Synthesis of a Porin Family in Mycobacterium smegmatis. Journal of Bacteriology, 2021, 203, .	1.0	5
11	Mycobacteriophages as Genomic Engineers and Anti-infective Weapons. MBio, 2021, 12, .	1.8	1
12	The Tuberculosis Drug Accelerator at year 10: what have we learned?. Nature Medicine, 2021, 27, 1333-1337.	15.2	32
13	Fundamentals of Public Health — A New Perspective Series. New England Journal of Medicine, 2021, 385, 556-557.	13.9	0
14	Call for emergency action to limit global temperature increases, restore biodiversity, and protect health. The Lancet Global Health, 2021, 9, e1493-e1495.	2.9	3
15	Call for emergency action to limit global temperature increases, restore biodiversity, and protect health: wealthy nations must do much more, much faster. Cmaj, 2021, 193, E1395-E1397.	0.9	4
16	Prophages encode phage-defense systems with cognate self-immunity. Cell Host and Microbe, 2021, 29, 1620-1633.e8.	5.1	50
17	Call for emergency action to limit global temperature increases, restore biodiversity, and protect health. Lancet Microbe, The, 2021, 2, e567-e569.	3.4	1
18	#HealthyClimate: Call for Emergency Action to Limit Global Temperature Increases, Restore Biodiversity, and Protect Health. JMIR Public Health and Surveillance, 2021, 7, e32958.	1.2	1

#	Article	IF	CITATIONS
19	Call for Emergency Action to Limit Global Temperature Increases, Restore Biodiversity, and Protect Health. Diseases of the Colon and Rectum, 2021, 64, 1160-1162.	0.7	1
20	Call for emergency action to limit global temperature increases, restore biodiversity, and protect health. PLoS Medicine, 2021, 18, e1003755.	3.9	2
21	Apelo por ação emergencial para limitar o aumento da temperatura global, restaurar a biodiversidade e proteger a saúde. Revista De Saude Publica, 2021, 55, 1ed.	0.7	0
22	Call for emergency action to limit global temperature increases, restore biodiversity, and protect health. Lancet Planetary Health, The, 2021, 5, e660-e662.	5.1	3
23	Call for Emergency Action to Limit Global Temperature Increases, Restore Biodiversity, and Protect Health. New England Journal of Medicine, 2021, 385, 1134-1137.	13.9	114
24	Call for emergency action to limit global temperature increases, restore biodiversity, and protect health. British Journal of Clinical Pharmacology, 2021, 87, 4048-4050.	1.1	0
25	Call for emergency action to limit global temperature increases, restore biodiversity, and protect health. Journal of Health, Population and Nutrition, 2021, 40, 39.	0.7	4
26	Call for emergency action to limit global temperature increases, restore biodiversity, and protect health. International Journal of Gynecology and Obstetrics, 2021, 155, 37-39.	1.0	2
27	Call for Emergency Action to Limit Global Temperature Increases, Restore Biodiversity, and Protect Health: Wealthy Nations Must do Much More, Much Faster. Annals of Global Health, 2021, 87, 88.	0.8	0
28	Call for emergency action to limit global temperature increases, restore biodiversity, and protect health. African Journal of Laboratory Medicine, 2021, 10, 1707.	0.2	0
29	Call for emergency action to limit global temperature increases, restore biodiversity, and protect health. Lancet, The, 2021, 398, 939-941.	6.3	70
30	Call for Emergency Action to Limit Global Temperature Increases, Restore Biodiversity, and Protect Health: Wealthy Nations Must Do Much More, Much Faster. Asia-Pacific Journal of Public Health, 2021, 33, 812-815.	0.4	1
31	Call for emergency action to limit global temperature increases, restore biodiversity, and protect health. Lancet Public Health, The, 2021, 6, e705-e707.	4.7	18
32	Call for emergency action to limit global temperature increases, restore biodiversity, and protect health. Lancet Psychiatry,the, 2021, 8, 857-859.	3.7	1
33	Call for emergency action to limit global temperature increases, restore biodiversity, and protect health. The Lancet Child and Adolescent Health, 2021, 5, 688-691.	2.7	1
34	6-Fluorophenylbenzohydrazides inhibit Mycobacterium tuberculosis growth through alteration of tryptophan biosynthesis. European Journal of Medicinal Chemistry, 2021, 226, 113843.	2.6	1
35	Call for Emergency Action to Limit Global Temperature Increases, Restore Biodiversity, and Protect Health. Global Heart, 2021, 16, 60.	0.9	3
36	Chamada para ação emergencial para limitar o aumento da temperatura global, restaurar a biodiversidade e proteger a saúde. Cadernos De Saude Publica, 2021, 37, e00194721.	0.4	1

#	Article	IF	CITATIONS
37	Modeling Site-Specific Nucleotide Biases Affecting Himar1 Transposon Insertion Frequencies in TnSeq Data Sets. MSystems, 2021, 6, e0087621.	1.7	7
38	Call for Emergency Action to Limit Global Temperature Increases, Restore Biodiversity, and Protect Health: Wealthy nations must do much more, much faster. Turkish Archives of Otorhinolaryngology, 2021, 59, 162-165.	0.0	0
39	Call for emergency action to limit global temperature increases, restore biodiversity, and protect health: wealthy nations must do much more, much faster. Canada Communicable Disease Report, 2021, 47, 442-445.	0.6	0
40	Spatiotemporal localization of proteins in mycobacteria. Cell Reports, 2021, 37, 110154.	2.9	16
41	The mycobacterial cell envelope $\hat{a} \in $ a moving target. Nature Reviews Microbiology, 2020, 18, 47-59.	13.6	209
42	A Disclosure Form for Work Submitted to Medical Journals: A Proposal From the International Committee of Medical Journal Editors. Annals of Internal Medicine, 2020, 172, 429.	2.0	7
43	The Urgency of Care during the Covid-19 Pandemic — Learning as We Go. New England Journal of Medicine, 2020, 382, 2461-2462.	13.9	41
44	A Disclosure Form for Work Submitted to Medical Journals — A Proposal from the International Committee of Medical Journal Editors. New England Journal of Medicine, 2020, 382, 667-668.	13.9	4
45	Pyrazinamide triggers degradation of its target aspartate decarboxylase. Nature Communications, 2020, 11, 1661.	5.8	66
46	Aspartate aminotransferase Rv3722c governs aspartate-dependent nitrogen metabolism in Mycobacterium tuberculosis. Nature Communications, 2020, 11, 1960.	5.8	44
47	Protective efficacy of an attenuated Mtb ΔLprG vaccine in mice. PLoS Pathogens, 2020, 16, e1009096.	2.1	12
48	Editorial message. Ethiopian Journal of Health Sciences, 2020, 30, 1-4.	0.2	8
49	A Disclosure Form for Work Submitted to Medical Journals: a Proposal from the International Committee of Medical Journal Editors. Journal of Korean Medical Science, 2020, 35, e39.	1.1	0
50	A disclosure form for work submitted to medical journals: a proposal from the International Committee of Medical Journal Editors. New Zealand Medical Journal, 2020, 133, 6-8.	0.5	0
51	Mycobacterium tuberculosis releases an antacid that remodels phagosomes. Nature Chemical Biology, 2019, 15, 889-899.	3.9	53
52	Genome-wide Phenotypic Profiling Identifies and Categorizes Genes Required for Mycobacterial Low Iron Fitness. Scientific Reports, 2019, 9, 11394.	1.6	36
53	Itaconyl-CoA forms a stable biradical in methylmalonyl-CoA mutase and derails its activity and repair. Science, 2019, 366, 589-593.	6.0	71
54	Novel Pyrazole-Containing Compounds Active against <i>Mycobacterium tuberculosis</i> . ACS Medicinal Chemistry Letters, 2019, 10, 1423-1429.	1.3	37

#	Article	IF	CITATIONS
55	Large-scale chemical–genetics yields new M. tuberculosis inhibitor classes. Nature, 2019, 571, 72-78.	13.7	119
56	Mycobacterium smegmatis HtrA Blocks the Toxic Activity of a Putative Cell Wall Amidase. Cell Reports, 2019, 27, 2468-2479.e3.	2.9	16
57	The Dream of a Mycobacterium. Microbiology Spectrum, 2019, 7, .	1.2	23
58	Global Assessment of Mycobacterium avium subsp. <i>hominissuis</i> Genetic Requirement for Growth and Virulence. MSystems, 2019, 4, .	1.7	31
59	The Dream of a Mycobacterium. , 2019, , 1096-1106.		1
60	Inhibition of <i>Pseudomonas aeruginosa</i> and <i>Mycobacterium tuberculosis</i> disulfide bond forming enzymes. Molecular Microbiology, 2019, 111, 918-937.	1.2	21
61	Cell Wall Hydrolytic Enzymes Enhance Antimicrobial Drug Activity Against Mycobacterium. Current Microbiology, 2019, 76, 398-409.	1.0	5
62	TB diagnosis from the Dark Ages to fluorescence. Nature Microbiology, 2018, 3, 268-269.	5.9	8
63	Identification of genes required for <i>Mycobacterium abscessus</i> growth in vivo with a prominent role of the ESX-4 locus. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E1002-E1011.	3.3	98
64	Characterization of Conserved and Novel Septal Factors in Mycobacterium smegmatis. Journal of Bacteriology, 2018, 200, .	1.0	42
65	Misunderstanding the goals of animal research. BMJ: British Medical Journal, 2018, 360, k759.	2.4	0
66	An Antibacterial Î²â€Łactone Kills Mycobacterium tuberculosis by Disrupting Mycolic Acid Biosynthesis. Angewandte Chemie - International Edition, 2018, 57, 348-353.	7.2	55
67	Ein antibakterielles βâ€Lacton bekänpft <i>Mycobacterium tuberculosis</i> durch Infiltration der Mykolsärebiosynthese. Angewandte Chemie, 2018, 130, 354-359.	1.6	3
68	Of MICs and Men. New England Journal of Medicine, 2018, 379, 882-883.	13.9	2
69	Kasugamycin potentiates rifampicin and limits emergence of resistance in Mycobacterium tuberculosis by specifically decreasing mycobacterial mistranslation. ELife, 2018, 7, .	2.8	25
70	Maturing Mycobacterium smegmatis peptidoglycan requires non-canonical crosslinks to maintain shape. ELife, 2018, 7, .	2.8	108
71	Comprehensive Essentiality Analysis of the <i>Mycobacterium tuberculosis</i> Genome via Saturating Transposon Mutagenesis. MBio, 2017, 8, .	1.8	496
72	Programmable transcriptional repression in mycobacteria using an orthogonal CRISPR interference platform. Nature Microbiology, 2017, 2, 16274.	5.9	368

#	Article	IF	CITATIONS
73	Deletion of a mycobacterial divisome factor collapses single-cell phenotypic heterogeneity. Nature, 2017, 546, 153-157.	13.7	161
74	A comprehensive characterization of PncA polymorphisms that confer resistance to pyrazinamide. Nature Communications, 2017, 8, 588.	5.8	87
75	Draft Genome Sequence of Mycobacterium avium 11. Genome Announcements, 2017, 5, .	0.8	7
76	Development of a Novel Lead that Targets M.Âtuberculosis Polyketide Synthase 13. Cell, 2017, 170, 249-259.e25.	13.5	124
77	Clinical Features of Tuberculosis. , 2017, , 89-113.		1
78	Surveillance Studies and Interpretation. , 2017, , 23-40.		0
79	Novel Treatment Strategies for TB Patients with HIV Co-infection. , 2017, , 213-225.		0
80	Crystal structures of the transpeptidase domain of the Mycobacterium tuberculosis penicillinâ€binding protein PonA1 reveal potential mechanisms of antibiotic resistance. FEBS Journal, 2016, 283, 2206-2218.	2.2	18
81	Inflammatory signaling in human tuberculosis granulomas is spatially organized. Nature Medicine, 2016, 22, 531-538.	15.2	273
82	Next-Generation High-Throughput Functional Annotation of Microbial Genomes. MBio, 2016, 7, .	1.8	19
83	Mycobacterial Metabolic Syndrome: LprG and Rv1410 Regulate Triacylglyceride Levels, Growth Rate and Virulence in Mycobacterium tuberculosis. PLoS Pathogens, 2016, 12, e1005351.	2.1	79
84	A cytoplasmic peptidoglycan amidase homologue controls mycobacterial cell wall synthesis. ELife, 2016, 5, .	2.8	82
85	Benzoic Acid-Inducible Gene Expression in Mycobacteria. PLoS ONE, 2015, 10, e0134544.	1.1	7
86	Compounds targeting disulfide bond forming enzyme DsbB of Gram-negative bacteria. Nature Chemical Biology, 2015, 11, 292-298.	3.9	47
87	A Novel Antimycobacterial Compound Acts as an Intracellular Iron Chelator. Antimicrobial Agents and Chemotherapy, 2015, 59, 2256-2264.	1.4	33
88	New insights into <scp>TB</scp> physiology suggest untapped therapeutic opportunities. Immunological Reviews, 2015, 264, 327-343.	2.8	23
89	Lipidomic Analysis Links Mycobactin Synthase K to Iron Uptake and Virulence in M. tuberculosis. PLoS Pathogens, 2015, 11, e1004792.	2.1	37
90	Cleavage Specificity of Mycobacterium tuberculosis ClpP1P2 Protease and Identification of Novel Peptide Substrates and Boronate Inhibitors with Anti-bacterial Activity. Journal of Biological Chemistry, 2015, 290, 11008-11020.	1.6	51

#	ARTICLE	IF	CITATIONS
91	Mycobacterial Nicotinate Mononucleotide Adenylyltransferase. Journal of Biological Chemistry, 2015, 290, 7693-7706.	1.6	25
92	Peptidoglycan synthesis in <i>Mycobacterium tuberculosis</i> is organized into networks with varying drug susceptibility. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13087-13092.	3.3	82
93	Target Mechanism-Based Whole-Cell Screening Identifies Bortezomib as an Inhibitor of Caseinolytic Protease in Mycobacteria. MBio, 2015, 6, e00253-15.	1.8	69
94	Phosphorylation of the Peptidoglycan Synthase PonA1 Governs the Rate of Polar Elongation in Mycobacteria. PLoS Pathogens, 2015, 11, e1005010.	2.1	100
95	Identification of Host-Targeted Small Molecules That Restrict Intracellular Mycobacterium tuberculosis Growth. PLoS Pathogens, 2014, 10, e1003946.	2.1	234
96	ARTIST: High-Resolution Genome-Wide Assessment of Fitness Using Transposon-Insertion Sequencing. PLoS Genetics, 2014, 10, e1004782.	1.5	148
97	Post-Translational Regulation via Clp Protease Is Critical for Survival of Mycobacterium tuberculosis. PLoS Pathogens, 2014, 10, e1003994.	2.1	69
98	Mycobacterial Esx-3 Requires Multiple Components for Iron Acquisition. MBio, 2014, 5, e01073-14.	1.8	74
99	Troubles with Tuberculosis Prevention. New England Journal of Medicine, 2014, 370, 375-376.	13.9	8
100	Metabolic and Bactericidal Effects of Targeted Suppression of NadD and NadE Enzymes in Mycobacteria. MBio, 2014, 5, .	1.8	66
101	Mycobacterial GenecuvAls Required for Optimal Nutrient Utilization and Virulence. Infection and Immunity, 2014, 82, 4104-4117.	1.0	25
102	Molecular profiling of <i>Mycobacterium tuberculosis</i> identifies tuberculosinyl nucleoside products of the virulence-associated enzyme Rv3378c. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2978-2983.	3.3	83
103	Binding of MgtR, a Salmonella Transmembrane Regulatory Peptide, to MgtC, a Mycobacterium tuberculosis Virulence Factor: A Structural Study. Journal of Molecular Biology, 2014, 426, 436-446.	2.0	21
104	Mycobacterial mistranslation is necessary and sufficient for rifampicin phenotypic resistance. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 1132-1137.	3.3	163
105	Compound-gene interaction mapping reveals distinct roles for <i>Staphylococcus aureus</i> teichoic acids. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 12510-12515.	3.3	84
106	<i>Mycobacterium tuberculosis</i> FtsX extracellular domain activates the peptidoglycan hydrolase, RipC. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8037-8042.	3.3	68
107	How sisters grow apart: mycobacterial growth and division. Nature Reviews Microbiology, 2014, 12, 550-562.	13.6	207
108	Selection of RNA aptamers against the M. tuberculosis EsxG protein using surface plasmon resonance-based SELEX. Biochemical and Biophysical Research Communications. 2014, 449, 114-119	1.0	26

#	Article	IF	CITATIONS
109	Genetic Strategies for Identifying New Drug Targets. Microbiology Spectrum, 2014, 2, MGM2-0030-2013.	1.2	5
110	Genomic analysis identifies targets of convergent positive selection in drug-resistant Mycobacterium tuberculosis. Nature Genetics, 2013, 45, 1183-1189.	9.4	393
111	Feast or famine: the host-pathogen battle over amino acids. Cellular Microbiology, 2013, 15, 1079-1087.	1.1	112
112	Diarylcoumarins inhibit mycolic acid biosynthesis and kill <i>Mycobacterium tuberculosis</i> by targeting FadD32. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 11565-11570.	3.3	89
113	Tryptophan Biosynthesis Protects Mycobacteria from CD4 T-Cell-Mediated Killing. Cell, 2013, 155, 1296-1308.	13.5	296
114	Protein Complexes and Proteolytic Activation of the Cell Wall Hydrolase RipA Regulate Septal Resolution in Mycobacteria. PLoS Pathogens, 2013, 9, e1003197.	2.1	49
115	para-Aminosalicylic acid is a prodrug targeting dihydrofolate reductase in Mycobacterium tuberculosis Journal of Biological Chemistry, 2013, 288, 28951.	1.6	3
116	High-resolution definition of the Vibrio cholerae essential gene set with hidden Markov model–based analyses of transposon-insertion sequencing data. Nucleic Acids Research, 2013, 41, 9033-9048.	6.5	115
117	Identification of New Drug Targets and Resistance Mechanisms in Mycobacterium tuberculosis. PLoS ONE, 2013, 8, e75245.	1.1	223
118	para-Aminosalicylic Acid Is a Prodrug Targeting Dihydrofolate Reductase in Mycobacterium tuberculosis. Journal of Biological Chemistry, 2013, 288, 23447-23456.	1.6	158
119	Bayesian analysis of gene essentiality based on sequencing of transposon insertion libraries. Bioinformatics, 2013, 29, 695-703.	1.8	74
120	High-Throughput Sequencing Enhanced Phage Display Identifies Peptides That Bind Mycobacteria. PLoS ONE, 2013, 8, e77844.	1.1	22
121	Mycobacterium tuberculosis ClpP1 and ClpP2 Function Together in Protein Degradation and Are Required for Viability in vitro and During Infection. PLoS Pathogens, 2012, 8, e1002511.	2.1	161
122	The active ClpP protease from <i>M. tuberculosis</i> is a complex composed of a heptameric ClpP1 and a ClpP2 ring. EMBO Journal, 2012, 31, 1529-1541.	3.5	118
123	Global Assessment of Genomic Regions Required for Growth in Mycobacterium tuberculosis. PLoS Pathogens, 2012, 8, e1002946.	2.1	220
124	A Phosphorylated Pseudokinase Complex Controls Cell Wall Synthesis in Mycobacteria. Science Signaling, 2012, 5, ra7.	1.6	151
125	Mycobacterium tuberculosis ESAT-6 Exhibits a Unique Membrane-interacting Activity That Is Not Found in Its Ortholog from Non-pathogenic Mycobacterium smegmatis. Journal of Biological Chemistry, 2012, 287, 44184-44191.	1.6	101
126	MmpL3 Is the Cellular Target of the Antitubercular Pyrrole Derivative BM212. Antimicrobial Agents and Chemotherapy, 2012, 56, 324-331.	1.4	190

#	Article	IF	CITATIONS
127	Detection and treatment of subclinical tuberculosis. Tuberculosis, 2012, 92, 447-452.	0.8	33
128	Bacterial proteolytic complexes as therapeutic targets. Nature Reviews Drug Discovery, 2012, 11, 777-789.	21.5	98
129	Lipidomic discovery of deoxysiderophores reveals a revised mycobactin biosynthesis pathway in <i>Mycobacterium tuberculosis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 1257-1262.	3.3	61
130	Protein inactivation in mycobacteria by controlled proteolysis and its application to deplete the beta subunit of RNA polymerase. Nucleic Acids Research, 2011, 39, 2210-2220.	6.5	94
131	Depletion of antibiotic targets has widely varying effects on growth. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4176-4181.	3.3	141
132	Latent Tuberculosis Infection in the United States. New England Journal of Medicine, 2011, 364, 1441-1448.	13.9	277
133	Characterization and Transcriptome Analysis of Mycobacterium tuberculosis Persisters. MBio, 2011, 2, e00100-11.	1.8	343
134	The Abyssomicin C family as in vitro inhibitors of Mycobacterium tuberculosis. Tuberculosis, 2010, 90, 298-300.	0.8	47
135	Relics of selection in the mycobacterial genome. Nature Genetics, 2010, 42, 476-478.	9.4	2
136	Variation among Genome Sequences of H37Rv Strains of <i>Mycobacterium tuberculosis</i> from Multiple Laboratories. Journal of Bacteriology, 2010, 192, 3645-3653.	1.0	216
137	Inhibition of bacterial disulfide bond formation by the anticoagulant warfarin. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 297-301.	3.3	58
138	Interaction and Modulation of Two Antagonistic Cell Wall Enzymes of Mycobacteria. PLoS Pathogens, 2010, 6, e1001020.	2.1	107
139	Structural Characterization of the <i>Mycobacterium tuberculosis</i> Biotin Biosynthesis Enzymes 7,8-Diaminopelargonic Acid Synthase and Dethiobiotin Synthetase,. Biochemistry, 2010, 49, 6746-6760.	1.2	50
140	Letting Sleeping <i>dos</i> Lie: Does Dormancy Play a Role in Tuberculosis?. Annual Review of Microbiology, 2010, 64, 293-311.	2.9	199
141	Host transcription in active and latent tuberculosis. Genome Biology, 2010, 11, 135.	13.9	3
142	HIV-1 Replication Is Differentially Regulated by Distinct Clinical Strains of Mycobacterium tuberculosis. PLoS ONE, 2009, 4, e6116.	1.1	39
143	Mycobacterial Esx-3 is required for mycobactin-mediated iron acquisition. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 18792-18797.	3.3	287
144	Systematic Genetic Nomenclature for Type VII Secretion Systems. PLoS Pathogens, 2009, 5, e1000507.	2.1	233

#	Article	IF	CITATIONS
145	Phthiocerol Dimycocerosate Transport Is Required for Resisting Interferonâ€Î³â€"Independent Immunity. Journal of Infectious Diseases, 2009, 200, 774-782.	1.9	55
146	Nitrile-inducible gene expression in mycobacteria. Tuberculosis, 2009, 89, 12-16.	0.8	71
147	The Granuloma in Tuberculosis — Friend or Foe?. New England Journal of Medicine, 2009, 360, 2471-2473.	13.9	61
148	Phage Transposon Mutagenesis. Methods in Molecular Biology, 2009, 465, 311-323.	0.4	16
149	Drugs versus bugs: in pursuit of the persistent predator Mycobacterium tuberculosis. Nature Reviews Microbiology, 2008, 6, 41-52.	13.6	220
150	Increased sulfate uptake by E. coli overexpressing the SLC26-related SulP protein Rv1739c from Mycobacterium tuberculosis. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2008, 149, 255-266.	0.8	40
151	The many roads to essential genes. Tuberculosis, 2008, 88, S19-S24.	0.8	16
152	Bacterial Growth and Cell Division: a Mycobacterial Perspective. Microbiology and Molecular Biology Reviews, 2008, 72, 126-156.	2.9	324
153	<i>Mycobacterium tuberculosis</i> Rv2224c modulates innate immune responses. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 264-269.	3.3	81
154	ESCRT factors restrict mycobacterial growth. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 3070-3075.	3.3	81
155	A Mycobacterial Enzyme Essential for Cell Division Synergizes with Resuscitation-Promoting Factor. PLoS Pathogens, 2008, 4, e1000001.	2.1	137
156	Function of a Mycobacterial Major Facilitator Superfamily Pump Requires a Membrane-Associated Lipoprotein. Journal of Bacteriology, 2008, 190, 1783-1791.	1.0	54
157	Transposon Site Hybridization in Mycobacterium tuberculosis. Methods in Molecular Biology, 2008, 416, 45-59.	0.4	33
158	Twin RNA Polymerase–Associated Proteins Control Virulence Gene Expression in Francisella tularensis. PLoS Pathogens, 2007, 3, e84.	2.1	115
159	A Defined O-Antigen Polysaccharide Mutant of Francisella tularensis Live Vaccine Strain Has Attenuated Virulence while Retaining Its Protective Capacity. Infection and Immunity, 2007, 75, 2591-2602.	1.0	67
160	The Complex Relationship between Mycobacteria and Macrophages: It's Not All Bliss. Cell Host and Microbe, 2007, 2, 5-6.	5.1	10
161	The open book of infectious diseases. Nature Medicine, 2007, 13, 279-280.	15.2	18
162	A partner for the resuscitationâ€promoting factors of <i>Mycobacterium tuberculosis</i> . Molecular Microbiology, 2007, 66, 658-668.	1.2	136

#	Article	IF	CITATIONS
163	Chemical biology and bacteria: not simply a matter of life or death. Current Opinion in Chemical Biology, 2006, 10, 321-326.	2.8	9
164	Dividing oceans into pools: strategies for the global analysis of bacterial genes. Microbes and Infection, 2006, 8, 1631-1636.	1.0	3
165	Detecting genetic variability among different Mycobacterium tuberculosis strains using DNA microarrays technology. Tuberculosis, 2006, 86, 314-318.	0.8	9
166	Scaling down: A PCR-based method to efficiently screen for desired knockouts in a high density Mycobacterium tuberculosis picked mutant library. Tuberculosis, 2006, 86, 310-313.	0.8	13
167	Characterization of mycobacterial virulence genes through genetic interaction mapping. Proceedings of the United States of America, 2006, 103, 11760-11765.	3.3	187
168	A new site-specific integration system for mycobacteria. Tuberculosis, 2005, 85, 317-323.	0.8	20
169	From The Cover: Genome-wide requirements for Mycobacterium tuberculosis adaptation and survival in macrophages. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 8327-8332.	3.3	634
170	Toward a New Therapy for Tuberculosis. New England Journal of Medicine, 2005, 352, 933-934.	13.9	13
171	Genome-Wide RNAi Screen for Host Factors Required for Intracellular Bacterial Infection. Science, 2005, 309, 1248-1251.	6.0	282
172	Differential Antibiotic Susceptibilities of Starved Mycobacterium tuberculosis Isolates. Antimicrobial Agents and Chemotherapy, 2005, 49, 4778-4780.	1.4	139
173	Once upon a Timeâ \in $^{ }_{ }$. American Journal of Respiratory and Critical Care Medicine, 2005, 172, 1361-1362.	2.5	3
174	New genetic approaches shed light on TB virulence. Trends in Microbiology, 2005, 13, 366-372.	3.5	10
175	Drosophila RNAi Screen Reveals CD36 Family Member Required for Mycobacterial Infection. Science, 2005, 309, 1251-1253.	6.0	347
176	Mycobacterium tuberculosis and the host response. Journal of Experimental Medicine, 2005, 201, 1693-1697.	4.2	132
177	The folate pathway is a target for resistance to the drug para-aminosalicylic acid (PAS) in mycobacteria. Molecular Microbiology, 2004, 53, 275-282.	1.2	158
178	Genes required for mycobacterial growth defined by high density mutagenesis. Molecular Microbiology, 2003, 48, 77-84.	1.2	2,302
179	Genetic requirements for mycobacterial survival during infection. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 12989-12994.	3.3	1,208
180	Bacterial genomics and vaccine design. Expert Review of Vaccines, 2003, 2, 437-445.	2.0	5

#	Article	IF	CITATIONS
181	A genome-scale analysis for identification of genes required for growth or survival of Haemophilus influenzae. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 966-971.	3.3	349
182	Genomic analyses of microbial virulence. Current Opinion in Microbiology, 2002, 5, 27-32.	2.3	24
183	Construction of a mariner -based transposon for epitope-tagging and genomic targeting. Gene, 2002, 296, 179-185.	1.0	152
184	Case 22-2001. New England Journal of Medicine, 2001, 345, 201-205.	13.9	13
185	Replication and integration of a Vibrio cholerae cryptic plasmid linked to the CTX prophage. Molecular Microbiology, 1998, 28, 1247-1254.	1.2	71
186	Mobile genetic elements and the evolution of new epidemic strains of Vibrio cholerae. Biomedical Research Reports, 1998, , 147-161.	0.3	10
187	Regulation, replication, and integration functions of the Vibrio cholerae CTXφ are encoded by region RS2. Molecular Microbiology, 1997, 24, 917-926.	1.2	200
188	Whole Genome Screens in Macrophages. , 0, , 537-543.		0
189	Genetic Strategies for Identifying New Drug Targets. , 0, , 493-509.		0
190	Transposon mutagenesis in Mycobacterium abscessus identifies an essential penicillin-binding protein involved in septal peptidoglycan synthesis and antibiotic sensitivity. ELife, 0, 11, .	2.8	16