Jiuzhong Yang

List of Publications by Citations

Source: https://exaly.com/author-pdf/5782318/jiuzhong-yang-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

155 3,313 30 53 h-index g-index citations papers 6.1 4,362 163 5.43 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
155	Selective conversion of syngas to light olefins. <i>Science</i> , 2016 , 351, 1065-8	33.3	740
154	Investigation on the pyrolysis and oxidation of toluene over a wide range conditions. I. Flow reactor pyrolysis and jet stirred reactor oxidation. <i>Combustion and Flame</i> , 2015 , 162, 3-21	5.3	126
153	An experimental and kinetic modeling study of three butene isomers pyrolysis at low pressure. <i>Combustion and Flame</i> , 2012 , 159, 905-917	5.3	125
152	The vacuum ultraviolet beamline/endstations at NSRL dedicated to combustion research. <i>Journal of Synchrotron Radiation</i> , 2016 , 23, 1035-45	2.4	103
151	Hydrothermally Stable Thioether-Bridged Mesoporous Materials with Void Defects in the Pore Walls. <i>Advanced Functional Materials</i> , 2005 , 15, 1297-1302	15.6	99
150	Investigation on the pyrolysis and oxidation of toluene over a wide range conditions. II. A comprehensive kinetic modeling study. <i>Combustion and Flame</i> , 2015 , 162, 22-40	5.3	86
149	Experimental and modeling study of the effects of adding oxygenated fuels to premixed n-heptane flames. <i>Combustion and Flame</i> , 2012 , 159, 2324-2335	5.3	79
148	Speciation and the laminar burning velocities of poly(oxymethylene) dimethyl ether 3 (POMDME3) flames: An experimental and modeling study. <i>Proceedings of the Combustion Institute</i> , 2017 , 36, 1269-12	278	78
147	Sulfur vacancy-rich MoS2 as a catalyst for the hydrogenation of CO2 to methanol. <i>Nature Catalysis</i> , 2021 , 4, 242-250	36.5	76
146	Thioether-bridged Mesoporous Organosilicas: Mesophase Transformations Induced by the Bridged Organosilane Precursor. <i>Advanced Functional Materials</i> , 2007 , 17, 569-576	15.6	72
145	Investigation on fuel-rich premixed flames of monocyclic aromatic hydrocarbons: Part I. Intermediate identification and mass spectrometric analysis. <i>Combustion and Flame</i> , 2010 , 157, 143-154	5.3	68
144	Online Study on the Pyrolysis of Polypropylene over the HZSM-5 Zeolite with Photoionization Time-of-Flight Mass Spectrometry. <i>Energy & Energy & 1090-1098</i>	4.1	55
143	Bulk Nanocrystalline Fe3Al-Based Material Prepared by Aluminothermic Reaction. <i>Advanced Materials</i> , 2006 , 18, 733-737	24	51
142	Experimental and modeling investigation on premixed ethylbenzene flames at low pressure. <i>Proceedings of the Combustion Institute</i> , 2011 , 33, 617-624	5.9	50
141	NbO x /CeO 2 -rods catalysts for oxidative dehydrogenation of propane: NbteO 2 interaction and reaction mechanism. <i>Journal of Catalysis</i> , 2017 , 348, 189-199	7.3	47
140	Gas-Phase Reaction Network of Li/MgO-Catalyzed Oxidative Coupling of Methane and Oxidative Dehydrogenation of Ethane. <i>ACS Catalysis</i> , 2019 , 9, 2514-2520	13.1	47
139	Experimental and kinetic modeling investigation on laminar premixed benzene flames with various equivalence ratios. <i>Proceedings of the Combustion Institute</i> , 2015 , 35, 855-862	5.9	44

(2016-2020)

138	Radical Chemistry and Reaction Mechanisms of Propane Oxidative Dehydrogenation over Hexagonal Boron Nitride Catalysts. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 8042-8046	16.4	43	
137	Experimental and kinetic modeling study of styrene combustion. <i>Combustion and Flame</i> , 2015 , 162, 18	368 <u>5</u> .13883	3 40	
136	Synergizing metal-support interactions and spatial confinement boosts dynamics of atomic nickel for hydrogenations. <i>Nature Nanotechnology</i> , 2021 , 16, 1141-1149	28.7	40	
135	Pyrolysis of n-Butylbenzene at Various Pressures: Influence of Long Side-Chain Structure on Alkylbenzene Pyrolysis. <i>Energy & Fuels</i> , 2017 , 31, 14270-14279	4.1	38	
134	Online Study on the Catalytic Pyrolysis of Bituminous Coal over HUSY and HZSM-5 with Photoionization Time-of-Flight Mass Spectrometry. <i>Energy & Description</i> 2016, 30, 1598-1604	4.1	38	
133	Investigation of third-order optical nonlinearity in KBe2BO3F2 crystal by Z-scan. <i>Applied Physics B:</i> Lasers and Optics, 2012 , 108, 301-305	1.9	37	
132	A chemical kinetic modeling study of indene pyrolysis. <i>Combustion and Flame</i> , 2019 , 206, 1-20	5.3	36	
131	Investigation on pyrolysis mechanism of guaiacol as lignin model compound at atmospheric pressure. <i>Fuel</i> , 2018 , 232, 632-638	7.1	36	
130	Mechanism study on the pyrolysis of the typical ether linkages in biomass. Fuel, 2019, 249, 146-153	7.1	34	
129	Polycyclic aromatic hydrocarbons in pyrolysis of gasoline surrogates (n-heptane/iso-octane/toluene). <i>Proceedings of the Combustion Institute</i> , 2019 , 37, 993-1001	5.9	33	
128	Experimental and kinetic modeling study of n-propanol and i-propanol combustion: Flow reactor pyrolysis and laminar flame propagation. <i>Combustion and Flame</i> , 2019 , 207, 171-185	5.3	32	
127	A study of low-pressure premixed ethylene flame with and without ethanol using photoionization mass spectrometry and modeling. <i>Proceedings of the Combustion Institute</i> , 2011 , 33, 569-576	5.9	32	
126	Acetaldehyde oxidation at low and intermediate temperatures: An experimental and kinetic modeling investigation. <i>Combustion and Flame</i> , 2018 , 191, 431-441	5.3	30	
125	Experimental and kinetic modeling studies of furan pyrolysis: Fuel decomposition and aromatic ring formation. <i>Fuel</i> , 2017 , 206, 239-247	7.1	28	
124	Experimental and kinetic modeling study of tert-butanol combustion at low pressure. <i>Energy</i> , 2012 , 43, 94-102	7.9	28	
123	Structural Parameter of Orientational Order to Predict the Boson Vibrational Anomaly in Glasses. <i>Physical Review Letters</i> , 2019 , 122, 015501	7.4	25	
122	Imaging of Polar and Nonpolar Species Using Compact Desorption Electrospray Ionization/Postphotoionization Mass Spectrometry. <i>Analytical Chemistry</i> , 2019 , 91, 6616-6623	7.8	24	
121	Pyrolysis Study on Solid Fuels: From Conventional Analytical Methods to Synchrotron Vacuum Ultraviolet Photoionization Mass Spectrometry. <i>Energy & Energy &</i>	4.1	24	

120	Experimental and kinetic modeling study of methyl butanoate and methyl butanoate/methanol flames at different equivalence ratios and C/O ratios. <i>Combustion and Flame</i> , 2012 , 159, 44-54	5.3	24
119	Experimental and kinetic modeling investigation on anisole pyrolysis: Implications on phenoxy and cyclopentadienyl chemistry. <i>Combustion and Flame</i> , 2019 , 201, 187-199	5.3	24
118	Methylcyclohexane pyrolysis and oxidation in a jet-stirred reactor. <i>Proceedings of the Combustion Institute</i> , 2019 , 37, 409-417	5.9	22
117	A thermal decomposition study of pine wood under ambient pressure using thermogravimetry combined with synchrotron vacuum ultraviolet photoionization mass spectrometry. <i>Proceedings of the Combustion Institute</i> , 2017 , 36, 2217-2224	5.9	21
116	A 200 W diode-side-pumped CW 2 h Tm:YAG laser with water cooling at 8°C. <i>Applied Physics B:</i> Lasers and Optics, 2011 , 103, 83-88	1.9	20
115	A comprehensive experimental and kinetic modeling study of tert-butanol combustion. <i>Combustion and Flame</i> , 2016 , 169, 154-170	5.3	20
114	Online photoionization mass spectrometric evaluation of catalytic co-pyrolysis of cellulose and polyethylene over HZSM-5. <i>Bioresource Technology</i> , 2019 , 275, 130-137	11	20
113	Ultrasonic nebulization extraction/low pressure photoionization mass spectrometry for direct analysis of chemicals in matrices. <i>Analytica Chimica Acta</i> , 2015 , 891, 203-10	6.6	19
112	Experimental and kinetic modeling investigation on methyl decanoate pyrolysis at low and atmospheric pressures. <i>Fuel</i> , 2018 , 232, 333-340	7.1	19
111	Pyrolysis study of Huainan coal with different particle sizes using TG analysis and online Py-PI-TOF MS. <i>Journal of the Energy Institute</i> , 2020 , 93, 405-414	5.7	17
110	Application of three-parameter Weibull mixture model for reliability assessment of NC machine tools: a case study. <i>Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science</i> , 2011 , 225, 2718-2726	1.3	16
109	Surface coupling of methyl radicals for efficient low-temperature oxidative coupling of methane. <i>Chinese Journal of Catalysis</i> , 2021 , 42, 1117-1125	11.3	16
108	Formation and Fate of Formaldehyde in Methanol-to-Hydrocarbon Reaction: In Situ Synchrotron Radiation Photoionization Mass Spectrometry Study. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 4873-4878	16.4	15
107	Experimental and kinetic modeling investigation on ethylcyclohexane low-temperature oxidation in a jet-stirred reactor. <i>Combustion and Flame</i> , 2020 , 214, 211-223	5.3	15
106	Photoionization Mass Spectrometric and Kinetic Modeling of Low-pressure Pyrolysis of Benzene. <i>Chinese Journal of Chemical Physics</i> , 2013 , 26, 245-251	0.9	15
105	Experimental and kinetic modeling investigation on sec-butylbenzene combustion: Flow reactor pyrolysis and laminar flame propagation at various pressures. <i>Combustion and Flame</i> , 2020 , 211, 18-31	5.3	15
104	Low-temperature chemistry triggered by probe cooling in a low-pressure premixed flame. <i>Combustion and Flame</i> , 2019 , 204, 260-267	5.3	14
103	An experimental study of indene pyrolysis with synchrotron vacuum ultraviolet photoionization mass spectrometry. <i>Physical Chemistry Chemical Physics</i> , 2019 , 21, 5510-5520	3.6	14

102	A molecular beam mass spectrometric investigation of plasma assisted oxidation and pyrolysis of methane. <i>Proceedings of the Combustion Institute</i> , 2019 , 37, 5577-5586	5.9	14
101	Pyrolysis study on cattle manure: From conventional analytical method to online study of pyrolysis photoionization time-of-flight mass spectrometry. <i>Journal of Analytical and Applied Pyrolysis</i> , 2020 , 151, 104916	6	13
100	A vacuum ultraviolet photoionization time-of-flight mass spectrometer with high sensitivity for study of gas-phase radical reaction in a flow tube. <i>International Journal of Chemical Kinetics</i> , 2019 , 51, 178-188	1.4	13
99	Experimental and Theoretical Investigation of the Pyrolysis of Furfural. <i>Journal of Physical Chemistry A</i> , 2019 , 123, 103-110	2.8	13
98	Rapid soot inception via 🖶 lkynyl substitution of polycyclic aromatic hydrocarbons. <i>Fuel</i> , 2021 , 295, 1209	5 8 0ı	13
97	Extractive Atmospheric Pressure Photoionization (EAPPI) Mass Spectrometry: Rapid Analysis of Chemicals in Complex Matrices. <i>Journal of the American Society for Mass Spectrometry</i> , 2016 , 27, 1597-6	5035 ⁵	12
96	Experimental and kinetic modeling study of laminar coflow diffusion methane flames doped with iso-butanol. <i>Proceedings of the Combustion Institute</i> , 2017 , 36, 1259-1267	5.9	12
95	Experimental and theoretical studies on decomposition of pyrrolidine. <i>Proceedings of the Combustion Institute</i> , 2011 , 33, 415-423	5.9	12
94	Sequential imperfect preventive maintenance policy with random maintenance quality under reliability limit. <i>Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science</i> , 2011 , 225, 1926-1935	1.3	12
93	First aromatic ring formation by the radical-chain reaction of vinylacetylene and propargyl. <i>Combustion and Flame</i> , 2021 , 225, 524-534	5.3	12
92	Ex Situ Catalytic Pyrolysis of Algal Biomass in a Double Microfixed-Bed Reactor: Catalyst Deactivation and Its Coking Behavior. <i>Energy & Energy & </i>	4.1	11
91	Pyrolysis of butane-2,3-dione from low to high pressures: Implications for methyl-related growth chemistry. <i>Combustion and Flame</i> , 2019 , 200, 69-81	5.3	11
90	New insights into propanal oxidation at low temperatures: An experimental and kinetic modeling study. <i>Proceedings of the Combustion Institute</i> , 2019 , 37, 565-573	5.9	10
89	Determination of absolute photoionization cross-sections of some aromatic hydrocarbons. <i>Rapid Communications in Mass Spectrometry</i> , 2020 , 34, e8899	2.2	10
88	Catalytic pyrolysis of xylan over alkali metal salts as revealed by synchrotron vacuum ultraviolet photoionization mass spectrometry. <i>Journal of Analytical and Applied Pyrolysis</i> , 2018 , 135, 94-100	6	10
87	Benzene decomposition by non-thermal plasma: A detailed mechanism study by synchrotron radiation photoionization mass spectrometry and theoretical calculations. <i>Journal of Hazardous Materials</i> , 2021 , 420, 126584	12.8	10
86	Experimental study of trimethyl aluminum decomposition. <i>Journal of Crystal Growth</i> , 2017 , 473, 6-10	1.6	9
85	Investigations on Pyrolysis of Isooctane at Low and Atmospheric Pressures. <i>Energy & amp; Fuels</i> , 2019 , 33, 3518-3528	4.1	9

84	Experimental and kinetic modeling investigation of rich premixed toluene flames doped with n-butanol. <i>Physical Chemistry Chemical Physics</i> , 2018 , 20, 10628-10636	3.6	9	
83	Experimental and kinetic modeling study on flow reactor pyrolysis of iso-pentanol: Understanding of iso-pentanol pyrolysis chemistry and fuel isomeric effects of pentanol. <i>Fuel</i> , 2019 , 257, 116039	7.1	8	
82	Sliding Wear of Ni🛮 7.5Si🗓 9.3Cr Alloy under Water Lubrication. <i>Tribology Letters</i> , 2005 , 20, 149-156	2.8	8	
81	Revealing the doping effects of C2H6O isomers on a benzene flame: An experimental and modeling study. <i>Combustion and Flame</i> , 2018 , 197, 355-368	5.3	8	
80	Direct and rapid analysis of trace levels steroids in water by thermal desorption atmospheric pressure photoionization mass spectrometry. <i>Analytical Methods</i> , 2019 , 11, 1304-1311	3.2	7	
79	Influence of Thermal Treatment of HUSY on Catalytic Pyrolysis of Polypropylene: An Online Photoionization Mass Spectrometric Study. <i>Energy & Energy & Energ</i>	4.1	7	
78	Fast and comprehensive characterization of chemical ingredients in traditional Chinese herbal medicines by extractive atmospheric pressure photoionization (EAPPI) mass spectrometry. <i>Rapid Communications in Mass Spectrometry</i> , 2017 , 31, 1491-1498	2.2	7	
77	The impact of the third O2 addition reaction network on ignition delay times of neo-pentane. <i>Proceedings of the Combustion Institute</i> , 2021 , 38, 299-307	5.9	7	
76	Radical Chemistry and Reaction Mechanisms of Propane Oxidative Dehydrogenation over Hexagonal Boron Nitride Catalysts. <i>Angewandte Chemie</i> , 2020 , 132, 8119-8123	3.6	6	
75	Upgrading of furans from in situ catalytic fast pyrolysis of xylan by reduced graphene oxide supported Pt nanoparticles. <i>Renewable Energy</i> , 2020 , 152, 94-101	8.1	6	
74	Working-in-tandem mechanism of multi-dopants in enhancing electrocatalytic nitrogen reduction reaction performance of carbon-based materials. <i>Nano Research</i> , 2021 , 14, 3234-3239	10	6	
73	Effects of Solvent and Ion Source Pressure on the Analysis of Anabolic Steroids by Low Pressure Photoionization Mass Spectrometry. <i>Journal of the American Society for Mass Spectrometry</i> , 2017 , 28, 724-728	3.5	5	
72	Novel Thermotolerant and Flexible Polyimide Aerogel Separator Achieving Advanced Lithium-Ion Batteries. <i>Advanced Functional Materials</i> ,2106176	15.6	5	
71	Understanding the Homogeneous Reactions of Primary Tar from Biomass Pyrolysis by Means of Photoionization Mass Spectrometry. <i>Energy & Energy & Ene</i>	4.1	5	
70	Exploring low temperature oxidation of 1-butene in jet-stirred reactors. <i>Combustion and Flame</i> , 2020 , 222, 259-271	5.3	5	
69	Experimental and kinetic modeling studies of 2-ethylfuran pyrolysis at low and atmospheric pressures. <i>Combustion and Flame</i> , 2021 , 226, 430-444	5.3	5	
68	Comparing the pyrolysis kinetics of dimethoxymethane and 1,2-dimethoxyethane: An experimental and kinetic modeling study. <i>Combustion and Flame</i> , 2021 , 226, 260-273	5.3	5	
67	Exploring combustion chemistry of ethyl valerate at various pressures: Pyrolysis, laminar burning velocity and kinetic modeling. <i>Combustion and Flame</i> , 2021 , 227, 27-38	5.3	5	

(2021-2021)

66	Experimental and kinetic modeling study of methyl heptanoate low-temperature oxidation in a jet-stirred reactor. <i>Fuel</i> , 2021 , 283, 118885	7.1	5	
65	Experimental and Kinetic Modeling Studies of Methyl 2-Furoate Pyrolysis at Atmospheric Pressure. <i>Energy & Description of Methyl 2-Furoate Pyrolysis at Atmospheric Pressure</i> .	4.1	4	
64	Elucidating the flame chemistry of monoglyme via experimental and modeling approaches. <i>Combustion and Flame</i> , 2018 , 191, 298-308	5.3	4	
63	Microstructure and properties of nc-TiC/a-C:H films deposited by radio frequency reactive sputtering. <i>Materials Science and Technology</i> , 2011 , 27, 1669-1673	1.5	4	
62	Experimental and kinetic modeling study of Emethyl-naphthalene pyrolysis: Part II. PAH formation. <i>Combustion and Flame</i> , 2021 , 233, 111530	5.3	4	
61	Exploring the oxidation chemistry of diisopropyl ether: Jet-stirred reactor experiments and kinetic modeling. <i>Proceedings of the Combustion Institute</i> , 2021 , 38, 321-328	5.9	4	
60	Pyrolysis chemistry of n-propylcyclohexane via experimental and modeling approaches. <i>Fuel</i> , 2021 , 283, 118847	7.1	4	
59	Continuous Butadiyne Addition to Propargyl: A Radical-Efficient Pathway for Polycyclic Aromatic Hydrocarbons. <i>Journal of Physical Chemistry Letters</i> , 2021 , 12, 8109-8114	6.4	4	
58	Moir[lechnique for spatial coherence measurements of soft-x-ray lasers. <i>Journal of the Optical Society of America A: Optics and Image Science, and Vision</i> , 2000 , 17, 790-3	1.8	3	
57	Experimental and Kinetic Modeling Studies of 3-Methylfuran Pyrolysis at Low and Atmospheric Pressures. <i>Energy & Description</i> 2020, 34, 981-988	4.1	3	
56	Probing the fuel-specific intermediates in the low-temperature oxidation of 1-heptene and modeling interpretation. <i>Proceedings of the Combustion Institute</i> , 2021 , 38, 385-394	5.9	3	
55	Thermal decomposition of furans with oxygenated substituents: A combined experimental and quantum chemical study. <i>Proceedings of the Combustion Institute</i> , 2021 , 38, 699-707	5.9	3	
54	Unraveling synergistic effects on pyrolysis reactivity and indene formation in co-pyrolysis of toluene and acetylene. <i>Proceedings of the Combustion Institute</i> , 2021 , 38, 1413-1421	5.9	3	
53	Exploring the low-temperature oxidation chemistry of 1-butene and i-butene triggered by dimethyl ether. <i>Proceedings of the Combustion Institute</i> , 2021 , 38, 289-298	5.9	3	
52	Insights into the interaction kinetics between propene and NOx at moderate temperatures with experimental and modeling methods. <i>Proceedings of the Combustion Institute</i> , 2021 , 38, 795-803	5.9	3	
51	Flow reactor pyrolysis of iso-butylbenzene and tert-butylbenzene at various pressures: Insight into fuel isomeric effects on pyrolysis chemistry of butylbenzenes. <i>Proceedings of the Combustion Institute</i> , 2021 , 38, 1423-1432	5.9	3	
50	Vacuum ultraviolet photochemistry of the conformers of the ethyl peroxy radical. <i>Physical Chemistry Chemical Physics</i> , 2021 , 23, 22096-22102	3.6	3	
49	Exploration on Thermal Decomposition of Cyclopentanone: A Flow Reactor Pyrolysis and Kinetic Modeling Study. <i>Energy & Decomposition</i> 2021, 35, 14023-14034	4.1	3	

48	A comprehensive study on low-temperature oxidation chemistry of cyclohexane. II. Experimental and kinetic modeling investigation. <i>Combustion and Flame</i> , 2021 , 235, 111550	5.3	3
47	Experimental and kinetic modeling studies of di-n-propyl ether pyrolysis at low and atmospheric pressures. <i>Fuel</i> , 2021 , 298, 120797	7.1	3
46	Combustion synthesis and characterization of Fe-Ni alloys. <i>International Journal of Self-Propagating High-Temperature Synthesis</i> , 2011 , 20, 134-139	0.7	2
45	Variable pressure JSR study of low temperature oxidation chemistry of n-heptane by synchrotron photoionization mass spectrometry. <i>Combustion and Flame</i> , 2022 , 240, 111946	5.3	2
44	Inception of Carbonaceous Nanostructures via Hydrogen-Abstraction Phenylacetylene-Addition Mechanism. <i>Journal of the American Chemical Society</i> , 2021 ,	16.4	2
43	Investigation on n-pentylbenzene combustion at various pressures: Insight into effects of side-chain length on alkylbenzene combustion. <i>Combustion and Flame</i> , 2022 , 238, 111976	5.3	2
42	Experimental and kinetic modeling study of di-n-propyl ether and diisopropyl ether combustion: Pyrolysis and laminar flame propagation velocity. <i>Combustion and Flame</i> , 2022 , 237, 111809	5.3	2
41	A high-pressure reactor coupled to synchrotron radiation photoionization mass spectrometry. <i>Review of Scientific Instruments</i> , 2020 , 91, 093102	1.7	2
40	Complexity of plastic instability in amorphous solids: Insights from spatiotemporal evolution of vibrational modes. <i>European Physical Journal E</i> , 2020 , 43, 56	1.5	2
39	Online Monitoring the Key Intermediates and Volatile Compounds Evolved from Green Tea Roasting by Synchrotron Radiation Photoionization Mass Spectrometry. <i>Journal of the American Society for Mass Spectrometry</i> , 2021 , 32, 1402-1411	3.5	2
38	Experimental study of nitropropane pyrolysis with molecular-beam mass spectrometry and tunable synchrotron VUV photoionization. Part I. The flow reactor pyrolysis of 1-nitropropane. <i>Journal of Analytical and Applied Pyrolysis</i> , 2021 , 155, 105051	6	2
37	Thermal decomposition of 1-hexene by flash pyrolysis: A study of initial decomposition mechanism. <i>Proceedings of the Combustion Institute</i> , 2021 , 38, 651-659	5.9	2
36	Exploring chemical kinetics of plasma assisted oxidation of dimethyl ether (DME). <i>Combustion and Flame</i> , 2021 , 225, 388-394	5.3	2
35	Exploring combustion chemistry of 1-pentene: Flow reactor pyrolysis at various pressures and development of a detailed combustion model. <i>International Journal of Chemical Kinetics</i> , 2021 , 53, 514-	5 2d	2
34	Experimental and kinetic modeling studies of furfural pyrolysis at low and atmospheric pressures. Journal of Analytical and Applied Pyrolysis, 2021 , 157, 105161	6	2
33	Exploring the interaction kinetics of butene isomers and NOx at low temperatures and diluted conditions. <i>Combustion and Flame</i> , 2021 , 233, 111557	5.3	2
32	Effect of the modification of alumina supports with chloride on the structure and catalytic performance of Ag/Al2O3 catalysts for the selective catalytic reduction of NOx with propene and H2/propene. <i>Chinese Journal of Catalysis</i> , 2021 , 42, 2242-2253	11.3	2
31	Experimental and theoretical studies of pyrolysis of chrysophanol and its derivatives. <i>Journal of Analytical and Applied Pyrolysis</i> , 2013 , 100, 237-244	6	1

(2008-2011)

30	Microstructure and mechanical behaviour of (Fe88Si12)95Al5 alloy prepared by aluminothermics. <i>Materials Science and Technology</i> , 2011 , 27, 1482-1484	1.5	1
29	Effects of cryogenic treatment on the mechanical and dry-sliding tribological behaviour of an Fe75Ni25 alloy. <i>Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology</i> , 2012 , 226, 71-78	1.4	1
28	Experimental and kinetic modeling study of the homogeneous chemistry of NH3 and NOx with CH4 at the diluted conditions. <i>Combustion and Flame</i> , 2022 , 112015	5.3	1
27	CH3EGenerating Capability as a Reactivity Descriptor for Metal Oxides in Oxidative Coupling of Methane. <i>ACS Catalysis</i> , 2021 , 11, 14651-14659	13.1	1
26	Exploring the reaction chemistry of biomass upgrading over HZSM-5 catalyst through model compounds. <i>Fuel</i> , 2022 , 312, 122874	7.1	1
25	Atmospheric-Pressure Pyrolysis Study of Chlorobenzene Using Synchrotron Radiation Photoionization Mass Spectrometry. <i>Journal of Physical Chemistry A</i> , 2021 , 125, 1949-1957	2.8	1
24	Identification of Isobars and Isomers in Cigarette Sidestream Smoke in Real Time by Synchrotron Radiation Photoionization Mass Spectrometry and Multiple Linear Regression. <i>Analytical Chemistry</i> , 2021 , 93, 5718-5726	7.8	1
23	Probing pyrolysis chemistry of 1-heptene pyrolysis with insight into fuel molecular structure effects. <i>Combustion and Flame</i> , 2021 , 227, 79-94	5.3	1
22	Combined experimental and theoretical study on photoionization cross sections of benzonitrile and o/m/p-cyanotoluene. <i>Journal of Chemical Physics</i> , 2021 , 154, 244301	3.9	1
21	Exploration of the pyrolysis chemistry of 1,1-diethoxybutane: A flow reactor and kinetic modeling study. <i>Fuel</i> , 2019 , 236, 437-444	7.1	1
20	Unraveling chemical structure of laminar premixed tetralin flames at low pressure with photoionization mass spectrometry and kinetic modeling. <i>International Journal of Chemical Kinetics</i> , 2021 , 53, 154-163	1.4	1
19	Experimental and kinetic modeling study of †methyl-naphthalene pyrolysis: Part I. Formation of monocyclic aromatics and small species. <i>Combustion and Flame</i> , 2021 , 111587	5.3	1
18	Molecular Orbital Insight into the Near-Threshold Photoionization Cross Sections of Monocyclic Substituted Aromatic Compounds. <i>Energy & Energy & 1988</i> , 2021, 35, 14051-14062	4.1	1
17	Pyrolysis of Lignocellulosic Biofuel Di-n-butyl Ether (DBE): Flow Reactor Experiments and Kinetic Modeling. <i>Energy & Energy & En</i>	4.1	1
16	Experimental and kinetic modeling studies of the low-temperature oxidation of 2-methylfuran in a jet-stirred reactor. <i>Combustion and Flame</i> , 2021 , 233, 111588	5.3	1
15	Formation and Fate of Formaldehyde in Methanol-to-Hydrocarbon Reaction: In Situ Synchrotron Radiation Photoionization Mass Spectrometry Study. <i>Angewandte Chemie</i> , 2020 , 132, 4903-4908	3.6	O
14	Influence of phase composition on fretting wear behavior of thermally sprayed aluminum bronze coatings. <i>Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology</i> , 2013 , 227, 1030-1037	1.4	0
13	Group Type Analysis of Asphalt by Column Liquid Chromatography. <i>Petroleum Science and Technology</i> , 2008 , 26, 665-673	1.4	О

12	Conformation-dependent low-temperature oxidation chemistry of methylcyclohexane: First oxygen addition and chain-branching. <i>Combustion and Flame</i> , 2022 , 111963	5.3	О
11	Experimental and kinetic study on flash pyrolysis of biomass via on-line photoionization mass spectrometry. <i>Applications in Energy and Combustion Science</i> , 2022 , 9, 100057	0.8	O
10	Insights into the Decomposition and Oxidation Chemistry of -Xylene in Laminar Premixed Flames. Journal of Physical Chemistry A, 2021, 125, 3189-3197	2.8	O
9	Exploring pyrolysis and oxidation chemistry of o-xylene at various pressures with special concerns on PAH formation. <i>Combustion and Flame</i> , 2021 , 228, 351-363	5.3	O
8	A kinetic study on pyrolysis of iso-propylcyclohexane: Fuel structure effects of alkylcyclohexane isomers on reaction mechanisms. <i>Proceedings of the Combustion Institute</i> , 2021 , 38, 489-497	5.9	О
7	Experimental study of nitropropane pyrolysis with molecular-beam mass spectrometry and tunable synchrotron VUV photoionization. Part II. The flow reactor pyrolysis of 2-nitropropane. <i>Journal of Analytical and Applied Pyrolysis</i> , 2021 , 157, 105212	6	O
6	Experimental and kinetic modeling investigation on 2,5-hexanedione oxidation in a jet-stirred reactor. <i>Combustion and Flame</i> , 2021 , 234, 111648	5.3	O
5	Low-temperature oxidation chemistry of 2,4,4-trimethyl-1-pentene (diisobutylene) triggered by dimethyl ether (DME): A jet-stirred reactor oxidation and kinetic modeling investigation. <i>Combustion and Flame</i> , 2021 , 234, 111629	5.3	O
4	Operando XAS Study of Pt-Doped CeO2 for the Nonoxidative Conversion of Methane. <i>ACS Catalysis</i> , 2022 , 12, 3897-3908	13.1	0
3	Experimental and kinetic modeling investigations on low-temperature oxidation of 2-ethylfuran in a jet-stirred reactor. <i>Combustion and Flame</i> , 2022 , 241, 112098	5.3	O
2	Optical configurations for free electron laser resonators with theoretical and numerical simulation. <i>Bulletin of the Russian Academy of Sciences: Physics</i> , 2012 , 76, 622-625	0.4	
1	On-line photoionization mass spectrometric study of the catalytic pyrolysis of acrylonitrile-butadiene-styrene copolymer over HZSM-5, HUSY and Al-MCM-41. <i>Fuel</i> , 2022 , 307, 12193	7.1	