
Aikaterini Mitrokotsa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5780750/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Homomorphic signcryption with public plaintextâ€result checkability. IET Information Security, 2021, 15, 333-350.	1.1	5
2	Practical and Provably Secure Distributed Aggregation: Verifiable Additive Homomorphic Secret Sharing. Cryptography, 2020, 4, 25.	1.4	5
3	Statically Aggregate Verifiable Random Functions and Application to E-Lottery. Cryptography, 2020, 4, 37.	1.4	3
4	Multiâ€key homomorphic authenticators. IET Information Security, 2019, 13, 618-638.	1.1	6
5	Decentralised Functional Signatures. Mobile Networks and Applications, 2019, 24, 934-946.	2.2	4
6	Robust Distributed Pseudorandom Functions for mNP Access Structures. Lecture Notes in Computer Science, 2019, , 107-126.	1.0	0
7	Differential Privacy meets Verifiable Computation: Achieving Strong Privacy and Integrity Guarantees. , 2019, , .		ο
8	<mml:math <br="" altimg="si6.gif" display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML">overflow="scroll"><mml:msup><mml:mrow><mml:mstyle mathvariant="sans-serif"><mml:mi>HB</mml:mi></mml:mstyle </mml:mrow><mml:mrow><mml:mo>+mathvariant="sans-serif"><mml:mi>DB</mml:mi></mml:mo></mml:mrow></mml:msup></mml:math> : Distance bounding meets human based authentication. Future Generation Computer Systems, 2018, 80, 627-639.	mo¥s∳mm	l:mødaw>
9	Tangible security: Survey of methods supporting secure ad-hoc connects of edge devices with physical context. Computers and Security, 2018, 78, 281-300.	4.0	16
10	Two-Hop Distance-Bounding Protocols: Keep Your Friends Close. IEEE Transactions on Mobile Computing, 2018, 17, 1723-1736.	3.9	16
11	VIVO: A secure, privacy-preserving, and real-time crowd-sensing framework for the Internet of Things. Pervasive and Mobile Computing, 2018, 49, 126-138.	2.1	11
12	Distributed Pseudorandom Functions for General Access Structures in NP. Lecture Notes in Computer Science, 2018, , 81-87.	1.0	1
13	Revisiting Two-Hop Distance-Bounding Protocols: Are You Really Close Enough?. Lecture Notes in Computer Science, 2018, , 177-188.	1.0	0
14	Near-optimal blacklisting. Computers and Security, 2017, 64, 110-121.	4.0	0
15	Grouping-Proof-Distance-Bounding Protocols: Keep all your friends close. IEEE Communications Letters, 2016, , 1-1.	2.5	2
16	Practical and provably secure distance-bounding. Journal of Computer Security, 2015, 23, 229-257.	0.5	27
17	Expected loss analysis for authentication in constrained channels. Journal of Computer Security, 2015, 23, 309-329.	0.5	5
18	Using Distance-Bounding Protocols to Securely Verify the Proximity of Two-Hop Neighbours. IEEE Communications Letters, 2015, 19, 1173-1176.	2.5	11

Aikaterini Mitrokotsa

#	Article	IF	CITATIONS
19	Authentication in Constrained Settings. Lecture Notes in Computer Science, 2015, , 3-12.	1.0	1
20	Distance-Bounding Protocols: Are You Close Enough?. IEEE Security and Privacy, 2015, 13, 47-51.	1.5	6
21	HB+DB, mitigating man-in-the-middle attacks against HB+ with distance bounding. , 2015, , .		4
22	Location leakage in distance bounding: Why location privacy does not work. Computers and Security, 2014, 45, 199-209.	4.0	13
23	Towards Secure Distance Bounding. Lecture Notes in Computer Science, 2014, , 55-67.	1.0	24
24	Intrusion detection in MANET using classification algorithms: The effects of cost and model selection. Ad Hoc Networks, 2013, 11, 226-237.	3.4	76
25	Secure and Lightweight Distance-Bounding. Lecture Notes in Computer Science, 2013, , 97-113.	1.0	30
26	Expected loss bounds for authentication in constrained channels. , 2012, , .		9
27	Guest Editors' Introduction: Special Section on Learning, Games, and Security. IEEE Transactions on Dependable and Secure Computing, 2012, 9, 449-450.	3.7	0
28	On the traceability of tags in SUAP RFID authentication protocols. , 2012, , .		5
29	Mafia fraud attack against the RČ Distance-Bounding Protocol. , 2012, , .		11
30	Weaknesses in another Gen2-based RFID authentication protocol. , 2012, , .		7
31	Evaluation of classification algorithms for intrusion detection in MANETs. Knowledge-Based Systems, 2012, 36, 217-225.	4.0	30
32	User-driven RFID applications and challenges. Personal and Ubiquitous Computing, 2012, 16, 223-224.	1.9	4
33	A comprehensive RFID solution to enhance inpatient medication safety. International Journal of Medical Informatics, 2011, 80, 13-24.	1.6	103
34	Threats to Networked RFID Systems. , 2011, , 39-63.		5
35	Classifying RFID attacks and defenses. Information Systems Frontiers, 2010, 12, 491-505.	4.1	188
36	Reid et al.'s distance bounding protocol and mafia fraud attacks over noisy channels. IEEE Communications Letters, 2010, 14, 121-123.	2.5	26

#	Article	IF	CITATIONS
37	Detecting intrusions within RFID systems through non-monotonic reasoning cleaning. , 2010, , .		2
38	Statistical Decision Making for Authentication and Intrusion Detection. , 2009, , .		2
39	Integrated RFID and Sensor Networks. Wireless Networks and Mobile Communications, 2009, , 511-535.	1.0	6
40	Intrusion Detection in Mobile Ad Hoc Networks Using Classification Algorithms. International Federation for Information Processing, 2008, , 133-144.	0.4	12
41	Intrusion Detection with Neural Networks and Watermarking Techniques for MANET. , 2007, , .		27
42	DDoS attacks and defense mechanisms: classification and state-of-the-art. Computer Networks, 2004, 44, 643-666.	3.2	502