Elwira Bisz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5779409/publications.pdf Version: 2024-02-01

FIMIDA RISZ

#	Article	IF	CITATIONS
1	Palladium-NHC (NHC = N-heterocyclic Carbene)-Catalyzed Suzuki–Miyaura Cross-Coupling of Alkyl Amides. ACS Catalysis, 2022, 12, 2426-2433.	11.2	23
2	N-Heterocyclic Carbene Complexes of Nickel(II) from Caffeine and Theophylline: Sustainable Alternative to Imidazol-2-ylidenes. Organometallics, 2022, 41, 1806-1815.	2.3	12
3	Cobaltâ^'NHC Catalyzed C(sp ²)â^'C(sp ³) and C(sp ²)â^'C(sp ²) Kumada Cross oupling of Aryl Tosylates with Alkyl and Aryl Grignard Reagents. ChemCatChem, 2021, 13, 202-206.	3.7	9
4	<i>N</i> -Butylpyrrolidone (NBP) as a non-toxic substitute for NMP in iron-catalyzed C(sp ²)–C(sp ³) cross-coupling of aryl chlorides. Green Chemistry, 2021, 23, 7515-7521.	9.0	8
5	Evaluation of Cyclic Amides as Activating Groups in N–C Bond Cross-Coupling: Discovery of <i>N</i> -Acyl-Î -valerolactams as Effective Twisted Amide Precursors for Cross-Coupling Reactions. Journal of Organic Chemistry, 2021, 86, 10455-10466.	3.2	12
6	Iron-Catalyzed Cross-Coupling Reactions of Alkyl Grignards with Aryl Chlorobenzenesulfonates. Molecules, 2021, 26, 5895.	3.8	3
7	<i>N</i> -Acyl-glutarimides: Effect of Glutarimide Ring on the Structures of Fully Perpendicular Twisted Amides and N–C Bond Cross-Coupling. Journal of Organic Chemistry, 2020, 85, 5475-5485.	3.2	21
8	Iron-Catalyzed C(sp2)–C(sp3) Cross-Coupling of Aryl Chlorobenzoates with Alkyl Grignard Reagents. Molecules, 2020, 25, 230.	3.8	11
9	Ligand Effect on Iron atalyzed Cross oupling Reactions: Evaluation of Amides as O oordinating Ligands. ChemCatChem, 2019, 11, 5733-5737.	3.7	9
10	lron-catalyzed C(sp ²)–C(sp ³) cross-coupling at low catalyst loading. Catalysis Science and Technology, 2019, 9, 1092-1097.	4.1	12
11	Nickelâ€Catalyzed C(sp 2)â^'C(sp 3) Kumada Cross oupling of Aryl Tosylates with Alkyl Grignard Reagents. Advanced Synthesis and Catalysis, 2019, 361, 2329-2336.	4.3	15
12	<i>N</i> â€Methylcaprolactam as a Dipolar Aprotic Solvent for Iron atalyzed Cross oupling Reactions: Matching Efficiency with Safer Reaction Media. ChemCatChem, 2019, 11, 1196-1199.	3.7	12
13	Iron-Catalyzed C(sp ²)–C(sp ³) Cross-Coupling of Chlorobenzenesulfonamides with Alkyl Grignard Reagents: Entry to Alkylated Aromatics. Journal of Organic Chemistry, 2019, 84, 1640-1646.	3.2	17
14	Iron atalyzed C(sp 2)â^'C(sp 3) Cross oupling of Chlorobenzamides with Alkyl Grignard Reagents: Development of Catalyst System, Synthetic Scope, and Application. Advanced Synthesis and Catalysis, 2019, 361, 85-95.	4.3	17
15	Eisenkatalysierte Kreuzkupplungen in der Synthese von Pharmazeutika: Streben nach Nachhaltigkeit. Angewandte Chemie, 2018, 130, 11284-11297.	2.0	54
16	2â€Methyltetrahydrofuran: A Green Solvent for Iron atalyzed Cross oupling Reactions. ChemSusChem, 2018, 11, 1290-1294.	6.8	44
17	Dichlorovanadium(IV) diamine-bis(phenolate) complexes for ethylene (co)polymerization and 1-olefin isospecific polymerization. Journal of Catalysis, 2018, 362, 65-73.	6.2	14
18	Ironâ€Catalyzed Crossâ€Couplings in the Synthesis of Pharmaceuticals: In Pursuit of Sustainability. Angewandte Chemie - International Edition, 2018, 57, 11116-11128.	13.8	214

Elwira Bisz

#	Article	IF	CITATIONS
19	Barriers to Rotation in ortho-Substituted Tertiary Aromatic Amides: Effect of Chloro-Substitution on Resonance and Distortion. Journal of Organic Chemistry, 2018, 83, 3159-3163.	3.2	29
20	Structures and energetic properties of 4-halobenzamides. Acta Crystallographica Section C, Structural Chemistry, 2018, 74, 1395-1402.	0.5	1
21	Polypropylene and poly(ethylene- <i>co</i> -1-octene) effective synthesis with diamine-bis(phenolate) complexes: Effect of complex structure on catalyst activity and product microstructure. Journal of Polymer Science Part A, 2017, 55, 2467-2476.	2.3	9
22	Iron-Catalyzed Câ^'O Bond Activation: Opportunity for Sustainable Catalysis. ChemSusChem, 2017, 10, 3865-3865.	6.8	0
23	Cyclic ureas (DMI, DMPU) as efficient, sustainable ligands in iron-catalyzed C(sp2)–C(sp3) coupling of aryl chlorides and tosylates. Green Chemistry, 2017, 19, 5361-5366.	9.0	46
24	Iron atalyzed Câ^'O Bond Activation: Opportunity for Sustainable Catalysis. ChemSusChem, 2017, 10, 3964-3981.	6.8	95
25	Novel diamine-bis(phenolate) Ti(IV) complexes – tuning the complex structure to control catalytic properties in α-olefin polymerization. Applied Catalysis A: General, 2016, 525, 137-144.	4.3	7
26	Synthesis, characterization and catalytic properties for olefin polymerization of two new dimeric zirconium(IV) complexes having diamine-bis(phenolate) and chloride ligands. Applied Catalysis A: General, 2015, 503, 26-33.	4.3	15
27	2,4-Di-tert-butyl-6-({[2-(dimethylamino)ethyl](2-hydroxybenzyl)amino}methyl)phenol. Acta Crystallographica Section E: Structure Reports Online, 2014, 70, o678-o678.	0.2	1
28	A comparative study on the polymerization of 1-octene promoted by vanadium and titanium complexes supported by phenoxyimine and salen type ligands. Journal of Polymer Research, 2013, 20, 1.	2.4	11