Paul L Stanwix

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5779226/publications.pdf Version: 2024-02-01

DALIL I STANIALY

#	Article	IF	CITATIONS
1	Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature, 2008, 455, 644-647.	13.7	1,554
2	Coherence of nitrogen-vacancy electronic spin ensembles in diamond. Physical Review B, 2010, 82, .	1.1	238
3	Magnetic field imaging with nitrogen-vacancy ensembles. New Journal of Physics, 2011, 13, 045021.	1.2	228
4	Far-field optical imaging and manipulation of individual spins with nanoscale resolution. Nature Physics, 2010, 6, 912-918.	6.5	142
5	Test of Lorentz Invariance in Electrodynamics Using Rotating Cryogenic Sapphire Microwave Oscillators. Physical Review Letters, 2005, 95, 040404.	2.9	127
6	Tests of Relativity by Complementary Rotating Michelson-Morley Experiments. Physical Review Letters, 2007, 99, 050401.	2.9	119
7	Invited Article: Design techniques and noise properties of ultrastable cryogenically cooled sapphire-dielectric resonator oscillators. Review of Scientific Instruments, 2008, 79, 051301.	0.6	100
8	Improved test of Lorentz invariance in electrodynamics using rotating cryogenic sapphire oscillators. Physical Review D, 2006, 74, .	1.6	87
9	Capture of low grade methane from nitrogen gas using dual-reflux pressure swing adsorption. Chemical Engineering Journal, 2015, 281, 739-748.	6.6	84
10	Characterising thermally controlled CH ₄ –CO ₂ hydrate exchange in unconsolidated sediments. Energy and Environmental Science, 2018, 11, 1828-1840.	15.6	70
11	Cryogenic sapphire oscillator with exceptionally high long-term frequency stability. Applied Physics Letters, 2006, 89, 203513.	1.5	67
12	Direct terrestrial test of Lorentz symmetry in electrodynamics to 10â^'18. Nature Communications, 2015, 6, 8174.	5.8	67
13	Gas hydrate formation probability distributions: Induction times, rates of nucleation and growth. Fuel, 2019, 252, 448-457.	3.4	53
14	Gas hydrate formation probability and growth rate as a function of kinetic hydrate inhibitor (KHI) concentration. Chemical Engineering Journal, 2020, 388, 124177.	6.6	47
15	Gas Hydrate Formation Probability Distributions: The Effect of Shear and Comparisons with Nucleation Theory. Langmuir, 2018, 34, 3186-3196.	1.6	43
16	Raman Spectroscopic Studies of Clathrate Hydrate Formation in the Presence of Hydrophobized Particles. Journal of Physical Chemistry A, 2016, 120, 417-424.	1.1	40
17	Earth's field NMR flow meter: Preliminary quantitative measurements. Journal of Magnetic Resonance, 2014, 245, 110-115.	1.2	34
18	Improved constraints on isotropic shift and anisotropies of the speed of light using rotating cryogenic sapphire oscillators. Physical Review D, 2010, 82, .	1.6	28

PAUL L STANWIX

#	Article	IF	CITATIONS
19	Anti-reflection coating for nitrogen-vacancy optical measurements in diamond. Applied Physics Letters, 2012, 100, .	1.5	28
20	Rotating odd-parity Lorentz invariance test in electrodynamics. Physical Review D, 2009, 80, .	1.6	24
21	Hydrate nucleation and growth on water droplets acoustically-levitated in high-pressure natural gas. Physical Chemistry Chemical Physics, 2019, 21, 21685-21688.	1.3	24
22	Testing local position and fundamental constant invariance due to periodic gravitational and boost using long-term comparison of the SYRTE atomic fountains and H-masers. Physical Review D, 2013, 87, .	1.6	22
23	Long-term operation and performance of cryogenic sapphire oscillators. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2006, 53, 2386-2393.	1.7	21
24	Quantitative multiphase flow characterisation using an Earth's field NMR flow meter. Flow Measurement and Instrumentation, 2017, 58, 104-111.	1.0	20
25	Improved Methods for Gas Mixture Viscometry Using a Vibrating Wire Clamped at Both Ends. Journal of Chemical & Engineering Data, 2014, 59, 1619-1628.	1.0	19
26	Characterisation of a microwave re-entrant cavity resonator for phase-equilibrium measurements and new dew-point data for a (0.25 argon + 0.75 carbon dioxide) mixture. Journal of Chemical Thermodynamics, 2016, 101, 395-404.	1.0	19
27	Viscosity of { <i>x</i> CH ₄ + (1 – <i>x</i>)C ₃ H ₈ } with <i>x</i> = 0.949 for Temperatures between (200 and 423) K and Pressures between (10 and 31) MPa. Journal of Chemical & Engineering Data, 2015, 60, 118-123.	1.0	18
28	Quantitative velocity distributions via nuclear magnetic resonance flow metering. Journal of Magnetic Resonance, 2016, 269, 179-185.	1.2	18
29	Dielectric permittivity, polarizability and dipole moment of refrigerants R1234ze(E) and R1234yf determined using a microwave re-entrant cavity resonator. Journal of Chemical Thermodynamics, 2019, 128, 148-158.	1.0	18
30	Cavity Bounds on Higher-Order Lorentz-Violating Coefficients. Physical Review Letters, 2011, 106, 180401.	2.9	17
31	Viscosity of {xCO2+(1â^'x)CH4} with x=0.5174 for temperatures between (229 and 348)K and pressures between (1 and 32)MPa. Journal of Chemical Thermodynamics, 2015, 87, 162-167.	1.0	17
32	Quantitative produced water analysis using mobile1H NMR. Measurement Science and Technology, 2016, 27, 105501.	1.4	17
33	Two-phase oil/water flow measurement using an Earth's field nuclear magnetic resonance flow meter. Chemical Engineering Science, 2019, 202, 222-237.	1.9	16
34	Rotating Resonator-Oscillator Experiments to Test Lorentz Invariance in Electrodynamics. , 2006, , 416-450.		15
35	A resistive Q-switch for low-field NMR systems. Journal of Magnetic Resonance, 2018, 287, 33-40.	1.2	15

³⁶ Viscosity of a [xCH4â€⁺+â€⁻(1â€⁻â[°]â€⁻x)C3H8] mixture with xâ€⁻=â€⁻0.8888 at temperatures between (203 and 424)â€⁻K and pressures between (2 and 31)â€⁻MPa. Fuel, 2018, 225, 563-572.

PAUL L STANWIX

#	Article	IF	CITATIONS
37	Viscosity and Dew Point Measurements of { <i>x</i> CH ₄ + (1 –) Tj ETQq1 1 0.784314 rgBT /Over	lock 10 Tf 1.0	50 747 Td (14
38	Densities, Dielectric Permittivities, and Dew Points for (Argon + Carbon Dioxide) Mixtures Determined with a Microwave Re-entrantÂCavityÂResonator. Journal of Chemical & amp; Engineering Data, 2017, 62, 2521-2532.	1.0	14
39	Comment on "Test of constancy of speed of light with rotating cryogenic optical resonatorsâ€. Physical Review A, 2005, 72, .	1.0	13
40	Optical frequency synthesis from a cryogenic microwave sapphire oscillator. Optics Express, 2006, 14, 4316.	1.7	12
41	NMR-Compatible Sample Cell for Gas Hydrate Studies in Porous Media. Energy & Fuels, 2020, 34, 12388-12398.	2.5	11
42	Measurements of solidification kinetics for benzene in methane at high pressures and cryogenic temperatures. Chemical Engineering Journal, 2021, 407, 127086.	6.6	11
43	Designs of a microwave TE/sub 011/ mode cavity for a space borne H-maser. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2005, 52, 1638-1643.	1.7	10
44	Speed of sound and derived thermodynamic properties of para-xylene at temperatures between (306) Tj ETQq0 (0 0 rgBT /0 1.6	Overlock 10 T
45	High-Pressure Thermal Conductivity Measurements of a (Methane + Propane) Mixture with a Transient Hot-Wire Apparatus. Journal of Chemical & Engineering Data, 2020, 65, 906-915.	1.0	10
46	Generation of 103.75 GHz CW Source With \$5.10^{-16}\$ Frequency Instability Using Cryogenic Sapphire Oscillators. IEEE Microwave and Wireless Components Letters, 2012, 22, 85-87.	2.0	9
47	Accurate Highâ€Pressure Measurements of Carbon Monoxide's Electrical Properties. ChemPhysChem, 2018, 19, 784-792.	1.0	7
48	Insights into CO2-CH4 hydrate exchange in porous media using magnetic resonance. Fuel, 2022, 312, 122830.	3.4	7
49	Application of Raman Spectroscopy for Sorption Analysis of Functionalized Porous Materials. Advanced Science, 2022, 9, e2105477.	5.6	7
50	Densities and dielectric permittivities for (carbon monoxide + carbon dioxide) mixtures determined with a microwave re-entrant cavity resonator. Journal of Chemical Thermodynamics, 2019, 129, 114-120.	1.0	6
51	Thermodynamic Properties of Liquid Toluene from Speed-of-Sound Measurements at Temperatures from 283.15ÂK to 473.15ÂK and at Pressures up to 390ÂMPa. International Journal of Thermophysics, 2021, 42, 1.	1.0	6
52	Second generation 50 K dual-mode sapphire oscillator. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2006, 53, 284-288.	1.7	5
53	Cryogenic sapphire oscillator with exceptionally high long-term frequency stability. Frequency Control Symposium and Exhibition, Proceedings of the IEEE International, 2007, , .	0.0	4

54Characterization of Fluid-Phase Behavior Using an Advanced Microwave Re-Entrant Cavity. Journal of
Chemical & amp; Engineering Data, 2020, 65, 3393-3402.1.03

#	Article	IF	CITATIONS
55	Nanoscale magnetic sensing using spin qubits in diamond. , 2009, , .		2
56	Managing Hydrate Formation in Subsea Production. , 2020, , .		2
57	Accurate measurements of very small coupling coefficients of electromagnetic resonators at microwave frequencies. Measurement Science and Technology, 2004, 15, 881-884.	1.4	1
58	Dielectric properties of binary hydrofluoroolefin refrigerant mixtures: Comparisons of new experimental data with molecular dynamics simulations. Journal of Chemical Thermodynamics, 2020, 142, 105985.	1.0	1
59	A microwave sensor for detecting impurity freeze out in liquefied natural gas production. Fuel Processing Technology, 2021, 219, 106878.	3.7	1
60	Using Precision Oscillators and Interferometers to Test Fundamental Physics. , 2006, , .		0
61	Continuous operation of an odd parity Lorentz Invariance test in electrodynamics using a microwave interferometer. , 2008, , .		0
62	Generation of 100 GHz with parts in 1016 frequency stability using cryogenic sapphire oscillators. , 2011, , .		0
63	Rotating microwave cryogenic sapphire oscillators for tests of Lorentz Invariance. , 2011, , .		0
64	Testing speed of light isotropy using rotating cryogenic sapphire microwave oscillators. , 2014, , .		0