Tadanori Kurosawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5779191/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Intrinsically stretchable and healable semiconducting polymer for organic transistors. Nature, 2016, 539, 411-415.	27.8	1,030
2	A chameleon-inspired stretchable electronic skin with interactive colour changing controlled by tactile sensing. Nature Communications, 2015, 6, 8011.	12.8	749
3	Stretchable Self-Healing Polymeric Dielectrics Cross-Linked Through Metal–Ligand Coordination. Journal of the American Chemical Society, 2016, 138, 6020-6027.	13.7	453
4	Hierarchical N-Doped Carbon as CO ₂ Adsorbent with High CO ₂ Selectivity from Rationally Designed Polypyrrole Precursor. Journal of the American Chemical Society, 2016, 138, 1001-1009.	13.7	405
5	High Performance Allâ€Polymer Solar Cell via Polymer Sideâ€Chain Engineering. Advanced Materials, 2014, 26, 3767-3772.	21.0	320
6	Diketopyrrolopyrroleâ€Based Semiconducting Polymer Nanoparticles for In Vivo Photoacoustic Imaging. Advanced Materials, 2015, 27, 5184-5190.	21.0	305
7	Flow-enhanced solution printing of all-polymer solar cells. Nature Communications, 2015, 6, 7955.	12.8	221
8	Rollâ€ŧoâ€Roll Printed Largeâ€Area Allâ€Polymer Solar Cells with 5% Efficiency Based on a Low Crystallinity Conjugated Polymer Blend. Advanced Energy Materials, 2017, 7, 1602742.	19.5	214
9	Efficient molecular doping of polymeric semiconductors driven by anion exchange. Nature, 2019, 572, 634-638.	27.8	208
10	Polyimide memory: a pithy guideline for future applications. Polymer Chemistry, 2013, 4, 16-30.	3.9	177
11	Inducing Elasticity through Oligoâ€Siloxane Crosslinks for Intrinsically Stretchable Semiconducting Polymers. Advanced Functional Materials, 2016, 26, 7254-7262.	14.9	138
12	Role of Polymer Structure on the Conductivity of Nâ€Đoped Polymers. Advanced Electronic Materials, 2016, 2, 1600004.	5.1	99
13	New Donor–Acceptor Oligoimides for High-Performance Nonvolatile Memory Devices. Chemistry of Materials, 2011, 23, 4487-4497.	6.7	95
14	New Dibenzothiophene-Containing Donorâ^'Acceptor Polyimides for High-Performance Memory Device Applications. Journal of Physical Chemistry C, 2011, 115, 5930-5939.	3.1	83
15	Taming Charge Transport in Semiconducting Polymers with Branched Alkyl Side Chains. Advanced Functional Materials, 2017, 27, 1701973.	14.9	80
16	Thiophene and Selenophene Donor–Acceptor Polyimides as Polymer Electrets for Nonvolatile Transistor Memory Devices. Macromolecules, 2012, 45, 6946-6956.	4.8	79
17	Effect of Spacer Length of Siloxaneâ€Terminated Side Chains on Charge Transport in Isoindigoâ€Based Polymer Semiconductor Thin Films. Advanced Functional Materials, 2015, 25, 3455-3462.	14.9	79
18	Comparison of the Morphology Development of Polymer–Fullerene and Polymer–Polymer Solar Cells during Solution‧hearing Blade Coating. Advanced Energy Materials, 2016, 6, 1601225.	19.5	79

TADANORI KUROSAWA

#	Article	IF	CITATIONS
19	Flexible polymer memory devices derived from triphenylamine–pyrene containing donor–acceptor polyimides. Journal of Materials Chemistry, 2012, 22, 20754.	6.7	70
20	Tuning the Electrical Memory Characteristics from Volatile to Nonvolatile by Perylene Imide Composition in Random Copolyimides. Macromolecules, 2012, 45, 4556-4563.	4.8	69
21	All-Polymer Solar Cells Employing Non-Halogenated Solvent and Additive. Chemistry of Materials, 2016, 28, 5037-5042.	6.7	69
22	Tunable Electrical Memory Characteristics Using Polyimide:Polycyclic Aromatic Compound Blends on Flexible Substrates. ACS Applied Materials & amp; Interfaces, 2013, 5, 4921-4929.	8.0	50
23	Polycyclic areneâ€based D–A polyimide electrets for highâ€performance nâ€type organic field effect transistor memory devices. Journal of Polymer Science Part A, 2014, 52, 139-147.	2.3	32
24	Impact of Polystyrene Oligomer Side Chains on Naphthalene Diimide–Bithiophene Polymers as nâ€Type Semiconductors for Organic Fieldâ€Effect Transistors. Advanced Functional Materials, 2016, 26, 1261-1270.	14.9	30
25	Air-Stable Benzo[<i>c</i>]thiophene Diimide <i>n</i> -Type π-Electron Core. Organic Letters, 2019, 21, 4448-4453.	4.6	23
26	Inducing a high twisted conformation in the polyimide structure by bulky donor moieties for the development of non-volatile memory. European Polymer Journal, 2013, 49, 3377-3386.	5.4	22
27	Understanding the Impact of Oligomeric Polystyrene Side Chain Arrangement on the Allâ€Polymer Solar Cell Performance. Advanced Energy Materials, 2018, 8, 1701552.	19.5	21
28	Damage-free Metal Electrode Transfer to Monolayer Organic Single Crystalline Thin Films. Scientific Reports, 2020, 10, 4702.	3.3	17
29	Tuning domain size and crystallinity in isoindigo/PCBM organic solar cells via solution shearing. Organic Electronics, 2017, 40, 79-87.	2.6	16
30	Supramolecular cocrystals built through redox-triggered ion intercalation in π-conjugated polymers. Communications Materials, 2021, 2, .	6.9	16
31	Effects of the acceptor conjugation length and composition on the electrical memory characteristics of random copolyimides. Journal of Polymer Science Part A, 2013, 51, 1348-1358.	2.3	15
32	Cooperative Aggregations of Nitrogen-Containing Perylene Diimides Driven by Rigid and Flexible Functional Groups. Chemistry of Materials, 2020, 32, 9115-9125.	6.7	14
33	Strong and Atmospherically Stable Dicationic Oxidative Dopant. Advanced Science, 2021, 8, e2101998.	11.2	10
34	Doped semiconducting polymer nanoantennas for tunable organic plasmonics. Communications Materials, 2022, 3, .	6.9	9
35	Chrysenodithiophene-Based Conjugated Polymer: An Elongated Fused ï€-Electronic Backbone with a Unique Orbital Structure Toward Efficient Intermolecular Carrier Transport. Macromolecules, 2021, 54, 2113-2123.	4.8	2