Tianyu Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5778816/publications.pdf Version: 2024-02-01

TIANVILLI

#	Article	IF	CITATIONS
1	An aqueous hybrid electrolyte for low-temperature zinc-based energy storage devices. Energy and Environmental Science, 2020, 13, 3527-3535.	30.8	442
2	Antifreezing Hydrogel Electrolyte with Ternary Hydrogen Bonding for Highâ€Performance Zincâ€Ion Batteries. Advanced Materials, 2022, 34, e2110140.	21.0	186
3	A highly reversible neutral zinc/manganese battery for stationary energy storage. Energy and Environmental Science, 2020, 13, 135-143.	30.8	180
4	lmmunizing Aqueous Zn Batteries against Dendrite Formation and Side Reactions at Various Temperatures via Electrolyte Additives. Small, 2021, 17, e2103195.	10.0	172
5	Gel Electrolyte Constructing Zn (002) Deposition Crystal Plane Toward Highly Stable Zn Anode. Advanced Science, 2022, 9, e2104832.	11.2	119
6	Endogenous Symbiotic Li ₃ N/Cellulose Skin to Extend the Cycle Life of Lithium Anode. Angewandte Chemie - International Edition, 2021, 60, 11718-11724.	13.8	74
7	Dendrite-Free Zinc-Based Battery with High Areal Capacity via the Region-Induced Deposition Effect of Turing Membrane. Journal of the American Chemical Society, 2021, 143, 13135-13144.	13.7	73
8	A Coralâ€Like FeP@NC Anode with Increasing Cycle Capacity for Sodiumâ€Ion and Lithiumâ€Ion Batteries Induced by Particle Refinement. Angewandte Chemie - International Edition, 2021, 60, 25013-25019.	13.8	66
9	Phenyleneâ€Bridged Bispyridinium with High Capacity and Stability for Aqueous Flow Batteries. Advanced Materials, 2021, 33, e2005839.	21.0	63
10	Cost, performance prediction and optimization of a vanadium flow battery by machine-learning. Energy and Environmental Science, 2020, 13, 4353-4361.	30.8	59
11	A highly reversible zinc deposition for flow batteries regulated by critical concentration induced nucleation. Energy and Environmental Science, 2021, 14, 4077-4084.	30.8	58
12	Membranes with Wellâ€Defined Selective Layer Regulated by Controlled Solvent Diffusion for High Power Density Flow Battery. Advanced Energy Materials, 2020, 10, 2001382.	19.5	54
13	Regulating the Molecular Interactions in Polymer Binder for High-Performance Lithium–Sulfur Batteries. ACS Nano, 2022, 16, 8449-8460.	14.6	52
14	Mechanoadaptive morphing gel electrolyte enables flexible and fast-charging Zn-ion batteries with outstanding dendrite suppression performance. Nano Research, 2022, 15, 2030-2039.	10.4	45
15	lonic liquid-assisted synthesis of Cu7Te4 ultrathin nanosheets with enhanced electrocatalytic activity for water oxidation. Nano Energy, 2017, 41, 780-787.	16.0	42
16	Multifunctional Carbon Felt Electrode with Nâ€Rich Defects Enables a Long ycle Zincâ€Bromine Flow Battery with Ultrahigh Power Density. Advanced Functional Materials, 2021, 31, 2102913.	14.9	42
17	Low ost Titanium–Bromine Flow Battery with Ultrahigh Cycle Stability for Gridâ€5cale Energy Storage. Advanced Materials, 2020, 32, e2005036.	21.0	28
18	High-energy-density aqueous zinc-based hybrid supercapacitor-battery with uniform zinc deposition achieved by multifunctional decoupled additive. Nano Energy, 2022, 96, 107120.	16.0	24

Tianyu Li

#	Article	IF	CITATIONS
19	A low-cost bromine-fixed additive enables a high capacity retention zinc-bromine batteries. Journal of Energy Chemistry, 2022, 65, 89-93.	12.9	21
20	Structural studies of the perovskite series La _{1â^'x} Sr _x CoO _{3â^'Î} during chemical looping with methane. Chemical Communications, 2019, 55, 4929-4932.	4.1	19
21	Porous Membrane with High Selectivity for Alkaline Quinone-Based Flow Batteries. ACS Applied Materials & Interfaces, 2020, 12, 48533-48541.	8.0	18
22	Understanding Dimethyl Methylphosphonate Adsorption and Decomposition on Mesoporous CeO ₂ . ACS Applied Materials & Interfaces, 2021, 13, 54597-54609.	8.0	16
23	Machine learning for flow batteries: opportunities and challenges. Chemical Science, 2022, 13, 4740-4752.	7.4	15
24	A High Energy Density Bromine-Based Flow Battery with Two-Electron Transfer. ACS Energy Letters, 2022, 7, 1034-1039.	17.4	15
25	Affinity Laminated Chromatography Membrane Builtâ€in Electrodes for Suppressing Polysulfide Shuttling in Lithium–Sulfur Batteries. Advanced Energy Materials, 2020, 10, 1903233.	19.5	14
26	Stop Four Gaps with One Bush: Versatile Hierarchical Polybenzimidazole Nanoporous Membrane for Highly Durable Li–S Battery. ACS Applied Materials & Interfaces, 2020, 12, 55809-55819.	8.0	14
27	A highly selective porous composite membrane with bromine capturing ability for a bromine-based flow battery. Materials Today Energy, 2021, 21, 100763.	4.7	14
28	The Mystery from Tetragonal NaVPO ₄ F to Monoclinic NaVPO ₄ F: Crystal Presentation, Phase Conversion, and Naâ€6torage Kinetics. Advanced Energy Materials, 2021, 11, 2100627.	19.5	11
29	A â^' 60Â ° C Lowâ€Temperature Aqueous Lithium Ionâ€Bromine Battery with High Power Densit Enabled by Electrolyte Design. Advanced Energy Materials, 2022, 12, .	^y 19.5	11
30	N-doped hierarchical porous carbon derived from bismuth salts decorated ZIF8 as a highly efficient electrocatalyst for CO ₂ reduction. Journal of Materials Chemistry A, 2021, 9, 320-326.	10.3	10
31	Morphology Selection Kinetics of Li Sphere via Interface Regulation at High Current Density for Pragmatic Li Metal Batteries. Advanced Energy Materials, 2022, 12, .	19.5	10
32	A data-driven and DFT assisted theoretic guide for membrane design in flow batteries. Journal of Materials Chemistry A, 2021, 9, 14545-14552.	10.3	9
33	A Coralâ€Like FeP@NC Anode with Increasing Cycle Capacity for Sodiumâ€Ion and Lithiumâ€Ion Batteries Induced by Particle Refinement. Angewandte Chemie, 2021, 133, 25217-25223.	2.0	9
34	Molecular Dynamics Studies on Liquid/Vapor Interface Properties and Structures of 1-Ethyl-3-methylimidazolium Dimethylphosphate-Water. Journal of Physical Chemistry B, 2017, 121, 3087-3098.	2.6	4
35	Fluorinated Graphite (FG)-Modified Li–S Batteries with Superhigh Primary Specific Capacity and Improved Cycle Stability. ACS Applied Materials & Interfaces, 2021, 13, 52717-52726.	8.0	4
36	Sb-Doped high-voltage LiCoO ₂ enabled improved structural stability and rate capability for high-performance Li-ion batteries. Chemical Communications, 2022, 58, 5379-5382.	4.1	4

Tianyu Li

#	Article	IF	CITATIONS
37	Spectroscopic studies of methyl paraoxon decomposition over mesoporous Ce-doped titanias for toxic chemical filtration. Journal of Hazardous Materials, 2022, 438, 129536.	12.4	3
38	Crystal field-induced lattice expansion upon reversible oxygen uptake/release in YbMn _{<i>x</i>} Fe _{2â^'<i>x</i>} O ₄ . Materials Advances, 2022, 3, 1087-1100.	5.4	2
39	Titania Nanomaterials for Sarin Decomposition: Understanding Fundamentals. ACS Applied Nano Materials, 2022, 5, 6659-6670.	5.0	2
40	Endogenous Symbiotic Li 3 N/Cellulose Skin to Extend the Cycle Life of Lithium Anode. Angewandte Chemie, 2021, 133, 11824-11830.	2.0	0
41	Mesoporous perovskite titanates via hydrothermal conversion. Chemical Communications, 2022, 58, 783-786.	4.1	0