
Kata Farkas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5778488/publications.pdf Version: 2024-02-01

Κλτλ Ελάκλο

#	Article	IF	CITATIONS
1	Discovery of novel fish papillomaviruses: From the Antarctic to the commercial fish market. Virology, 2022, 565, 65-72.	1.1	10
2	Understanding and managing uncertainty and variability for wastewater monitoring beyond the pandemic: Lessons learned from the United Kingdom national COVID-19 surveillance programmes. Journal of Hazardous Materials, 2022, 424, 127456.	6.5	105
3	A comparison of precipitation and filtration-based SARS-CoV-2 recovery methods and the influence of temperature, turbidity, and surfactant load in urban wastewater. Science of the Total Environment, 2022, 808, 151916.	3.9	47
4	PREVALENCE AND RELATIVE RISK OF ROTAVIRUS GASTROENTERITIS IN CHILDREN UNDER FIVE YEARS IN NIGERIA: A SYSTEMATIC REVIEW AND META-ANALYSIS. Pathogens and Global Health, 2022, , 1-12.	1.0	0
5	Assessment of two types of passive sampler for the efficient recovery of SARS-CoV-2 and other viruses from wastewater. Science of the Total Environment, 2022, 838, 156580.	3.9	19
6	Concentration and Quantification of SARS-CoV-2 RNA in Wastewater Using Polyethylene Glycol-Based Concentration and qRT-PCR. Methods and Protocols, 2021, 4, 17.	0.9	42
7	Investigating awareness, fear and control associated with norovirus and other pathogens and pollutants using best–worst scaling. Scientific Reports, 2021, 11, 11194.	1.6	4
8	Attenuation and transport of human enteric viruses and bacteriophage MS2 in alluvial sand and gravel aquifer media—laboratory studies. Water Research, 2021, 196, 117051.	5.3	13
9	Monitoring SARS-CoV-2 in municipal wastewater to evaluate the success of lockdown measures for controlling COVID-19 in the UK. Water Research, 2021, 200, 117214.	5.3	117
10	Tracing the fate of wastewater viruses reveals catchment-scale virome diversity and connectivity. Water Research, 2021, 203, 117568.	5.3	17
11	Site Specific Relationships between COVID-19 Cases and SARS-CoV-2 Viral Load in Wastewater Treatment Plant Influent. Environmental Science & Technology, 2021, 55, 15276-15286.	4.6	38
12	Surveillance of SARS-CoV-2 RNA in wastewater: Methods optimization and quality control are crucial for generating reliable public health information. Current Opinion in Environmental Science and Health, 2020, 17, 82-93.	2.1	126
13	Shedding of SARS-CoV-2 in feces and urine and its potential role in person-to-person transmission and the environment-based spread of COVID-19. Science of the Total Environment, 2020, 749, 141364.	3.9	293
14	Viral indicators for tracking domestic wastewater contamination in the aquatic environment. Water Research, 2020, 181, 115926.	5.3	97
15	Wastewater-Based Epidemiology: Global Collaborative to Maximize Contributions in the Fight Against COVID-19. Environmental Science & amp; Technology, 2020, 54, 7754-7757.	4.6	337
16	Comparison of virus concentration methods for the RT-qPCR-based recovery of murine hepatitis virus, a surrogate for SARS-CoV-2 from untreated wastewater. Science of the Total Environment, 2020, 739, 139960.	3.9	405
17	Wastewater and public health: the potential of wastewater surveillance for monitoring COVID-19. Current Opinion in Environmental Science and Health, 2020, 17, 14-20.	2.1	163
18	Emerging technologies for the rapid detection of enteric viruses in the aquatic environment. Current Opinion in Environmental Science and Health, 2020, 16, 1-6.	2.1	51

Kata Farkas

#	Article	IF	CITATIONS
19	Viral dispersal in the coastal zone: A method to quantify water quality risk. Environment International, 2019, 126, 430-442.	4.8	18
20	Critical Evaluation of CrAssphage as a Molecular Marker for Human-Derived Wastewater Contamination in the Aquatic Environment. Food and Environmental Virology, 2019, 11, 113-119.	1.5	77
21	Seasonal and spatial dynamics of enteric viruses in wastewater and in riverine and estuarine receiving waters. Science of the Total Environment, 2018, 634, 1174-1183.	3.9	134
22	Seasonal and diurnal surveillance of treated and untreated wastewater for human enteric viruses. Environmental Science and Pollution Research, 2018, 25, 33391-33401.	2.7	39
23	Two-Step Concentration of Complex Water Samples for the Detection of Viruses. Methods and Protocols, 2018, 1, 35.	0.9	18
24	Viromic Analysis of Wastewater Input to a River Catchment Reveals a Diverse Assemblage of RNA Viruses. MSystems, 2018, 3, .	1.7	59
25	Genomoviruses associated with mountain and western pine beetles. Virus Research, 2018, 256, 17-20.	1.1	11
26	Fish polyomaviruses belong to two distinct evolutionary lineages. Journal of General Virology, 2018, 99, 567-573.	1.3	19
27	Evaluation of Two Triplex One-Step qRT-PCR Assays for the Quantification of Human Enteric Viruses in Environmental Samples. Food and Environmental Virology, 2017, 9, 342-349.	1.5	22
28	Genome sequences of a capulavirus infecting Plantago lanceolata in the Ã…land archipelago of Finland. Archives of Virology, 2017, 162, 2041-2045.	0.9	39
29	Genome Sequences of <i>Beet curly top Iran virus</i> , <i>Oat dwarf virus</i> , <i>Turnip curly top virus</i> , and <i>Wheat dwarf virus</i> Identified in Leafhoppers. Genome Announcements, 2017, 5, .	0.8	13
30	Tracking effluent discharges in undisturbed stony soil and alluvial gravel aquifer using synthetic DNA tracers. Science of the Total Environment, 2017, 592, 144-152.	3.9	27
31	Evaluation of Molecular Methods for the Detection and Quantification of Pathogen-Derived Nucleic Acids in Sediment. Frontiers in Microbiology, 2017, 8, 53.	1.5	26
32	Abundance and Distribution of Enteric Bacteria and Viruses in Coastal and Estuarine Sediments—a Review. Frontiers in Microbiology, 2016, 7, 1692.	1.5	109
33	The Ancient Evolutionary History of Polyomaviruses. PLoS Pathogens, 2016, 12, e1005574.	2.1	190
34	Molecular characterization and prevalence of two capulaviruses: Alfalfa leaf curl virus from France and Euphorbia caput-medusae latent virus from South Africa. Virology, 2016, 493, 142-153.	1.1	40
35	Serological responses to <i>Cryptosporidium</i> antigens in inhabitants of Hungary using conventionally filtered surface water and riverbank filtered drinking water. Epidemiology and Infection, 2015, 143, 2743-2747.	1.0	8
36	Identification of novel Bromus- and Trifolium-associated circular DNA viruses. Archives of Virology, 2015, 160, 1303-1311.	0.9	28

Kata Farkas

#	Article	IF	CITATIONS
37	Size exclusion-based purification and PCR-based quantitation of MS2 bacteriophage particles for environmental applications. Journal of Virological Methods, 2015, 213, 135-138.	1.0	9
38	Adsorption of Rotavirus, MS2 Bacteriophage and Surface-Modified Silica Nanoparticles to Hydrophobic Matter. Food and Environmental Virology, 2015, 7, 261-268.	1.5	33
39	Identification of an avian polyomavirus associated with Adélie penguins (Pygoscelis adeliae). Journal of General Virology, 2015, 96, 851-857.	1.3	41
40	Genome Sequence of a Diverse Goose Circovirus Recovered from Greylag Goose. Genome Announcements, 2015, 3, .	0.8	8
41	Detection and genotype analysis of Giardia duodenalis from asymptomatic Hungarian inhabitants and comparative findings in three distinct locations. Acta Microbiologica Et Immunologica Hungarica, 2014, 61, 19-26.	0.4	5
42	Mimicking filtration and transport of rotavirus and adenovirus in sand media using DNA-labeled, protein-coated silica nanoparticles. Water Research, 2014, 62, 167-179.	5.3	44
43	A Gel Filtration-Based Method for the Purification of Infectious Rotavirus Particles for Environmental Research Applications. Food and Environmental Virology, 2013, 5, 231-235.	1.5	13