Ellen J Yezierski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5778231/publications.pdf

Version: 2024-02-01

567281 677142 51 662 15 22 citations h-index g-index papers 52 52 52 475 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Misconceptions about the Particulate Nature of Matter. Using Animations To Close the Gender Gap. Journal of Chemical Education, 2006, 83, 954.	2.3	83
2	Detecting Art Forgeries: A Problem-Based Raman Spectroscopy Lab. Journal of Chemical Education, 2014, 91, 446-450.	2.3	40
3	Seeing Chemistry through the Eyes of the Blind: A Case Study Examining Multiple Gas Law Representations. Journal of Chemical Education, 2013, 90, 710-716.	2.3	33
4	Evidence for the Effectiveness of Inquiry-Based, Particulate-Level Instruction on Conceptions of the Particulate Nature of Matter. Journal of Chemical Education, 2012, 89, 192-198.	2.3	32
5	Characterizing the Landscape: Collegiate Organizations' Chemistry Outreach Practices. Journal of Chemical Education, 2018, 95, 7-16.	2.3	30
6	Target inquiry: changing chemistry high school teachers' classroom practices and knowledge and beliefs about inquiry instruction. Chemistry Education Research and Practice, 2011, 12, 74-84.	2.5	25
7	Exploring the Structure and Function of the Chemistry Self-Concept Inventory with High School Chemistry Students. Journal of Chemical Education, 2015, 92, 1782-1789.	2.3	24
8	Effectiveness of Inquiry-Based Lessons Using Particulate Level Models To Develop High School Students' Understanding of Conceptual Stoichiometry. Journal of Chemical Education, 2016, 93, 1002-1009.	2.3	24
9	Development of a protocol to evaluate the use of representations in secondary chemistry instruction. Chemistry Education Research and Practice, 2014, 15, 777-786.	2.5	23
10	Guiding teaching with assessments: high school chemistry teachers' use of data-driven inquiry. Chemistry Education Research and Practice, 2015, 16, 93-103.	2.5	23
11	Target Inquiry: Helping Teachers Use a Research Experience To Transform Their Teaching Practices. Journal of Chemical Education, 2012, 89, 442-448.	2.3	20
12	A novel qualitative method to improve access, elicitation, and sample diversification for enhanced transferability applied to studying chemistry outreach. Chemistry Education Research and Practice, 2018, 19, 410-430.	2.5	20
13	College Students Teaching Chemistry through Outreach: Conceptual Understanding of the Elephant Toothpaste Reaction and Making Liquid Nitrogen Ice Cream. Journal of Chemical Education, 2018, 95, 2091-2102.	2.3	18
14	Improving practice with target inquiry: high school chemistry teacher professional development that works. Chemistry Education Research and Practice, 2011, 12, 344-354.	2.5	17
15	Formative Assessment in High School Chemistry Teaching: Investigating the Alignment of Teachers' Goals with Their Items. Journal of Chemical Education, 2015, 92, 1619-1625.	2.3	17
16	Citrus Quality Control: An NMR/MRI Problem-Based Experiment. Journal of Chemical Education, 2016, 93, 335-339.	2.3	17
17	Paper-and-Glue Unit Cell Models. Journal of Chemical Education, 2003, 80, 157.	2.3	12
18	A New Chemistry Education Research Frontier. Journal of Chemical Education, 2012, 89, 1337-1339.	2.3	11

#	Article	IF	Citations
19	Targeting the Development of Content Knowledge and Scientific Reasoning: Reforming College-Level Chemistry for Nonscience Majors. Journal of Chemical Education, 2015, 92, 46-51.	2.3	11
20	Tool trouble: Challenges with using selfâ€report data to evaluate longâ€term chemistry teacher professional development. Journal of Research in Science Teaching, 2016, 53, 1055-1081.	3.3	11
21	Professional Development Aligned with AP Chemistry Curriculum: Promoting Science Practices and Facilitating Enduring Conceptual Understanding. Journal of Chemical Education, 2014, 91, 1368-1374.	2.3	10
22	Asymmetric Aldol Additions: A Guided-Inquiry Laboratory Activity on Catalysis. Journal of Chemical Education, 2018, 95, 158-163.	2.3	10
23	Remote Chemistry Teacher Professional Development Delivery: Enduring Lessons for Programmatic Redesign. Journal of Chemical Education, 2021, 98, 2518-2526.	2.3	10
24	POGIL Implementation in Large Classes: Strategies for Planning, Teaching, and Management. ACS Symposium Series, 2008, , 60-71.	0.5	9
25	Development and validation of an instrument to measure student knowledge gains for chemical and physical change for grades 6–8. Chemistry Education Research and Practice, 2012, 13, 384-393.	2.5	9
26	Characterizing high school chemistry teachers' use of assessment data via latent class analysis. Chemistry Education Research and Practice, 2016, 17, 296-308.	2.5	9
27	Using Students' Conceptions of Air To Evaluate a Guided-Inquiry Activity Classifying Matter Using Particulate Models. Journal of Chemical Education, 2017, 94, 206-210.	2.3	9
28	Combining Novel Visualizations and Synthesis To Explore Structure–Property Relationships Using Cobalt Complexes. Journal of Chemical Education, 2017, 94, 1952-1959.	2.3	8
29	Goodwill without Guidance: College Student Outreach Practitioner Training. Journal of Chemical Education, 2019, 96, 414-422.	2.3	8
30	"You Lose Some Accuracy When You're Dumbing it Down― Teaching and Learning Ideas of College Students Teaching Chemistry through Outreach. Journal of Chemical Education, 2019, 96, 203-212.	2.3	8
31	Incorporating concept development activities into a flipped classroom structure: using PhET simulations to put a twist on the flip. Chemistry Education Research and Practice, 2021, 22, 842-854.	2.5	8
32	Beyond academic tracking: using cluster analysis and self-organizing maps to investigate secondary students' chemistry self-concept. Chemistry Education Research and Practice, 2016, 17, 711-722.	2.5	7
33	Chemistry critical friendships: investigating chemistry-specific discourse within a domain-general discussion of best practices for inquiry assessments. Chemistry Education Research and Practice, 2020, 21, 452-468.	2.5	7
34	Investigating high school chemistry teachers $\hat{a} \in \mathbb{N}$ assessment item generation processes for a solubility lab. Chemistry Education Research and Practice, 2021, 22, 214-225.	2.5	7
35	Investigating How Assessment Design Guides High School Chemistry Teachers' Interpretation of Student Responses to a Planned, Formative Assessment. Journal of Chemical Education, 2021, 98, 1099-1111.	2.3	6
36	Pedagogical chemistry sensemaking: a novel conceptual framework to facilitate pedagogical sensemaking in model-based lesson planning. Chemistry Education Research and Practice, 2022, 23, 287-299.	2.5	6

#	Article	IF	CITATIONS
37	Observation as a Tool for Investigating Chemistry Teaching and Learning. ACS Symposium Series, 2014, , $11\text{-}29$.	0.5	5
38	Testâ€"Retest Reliability of the Adaptive Chemistry Assessment Survey for Teachers: Measurement Error and Alternatives to Correlation. Journal of Chemical Education, 2016, 93, 239-247.	2.3	5
39	Applying the Next Generation Science Standards to Current Chemistry Classrooms: How Lessons Measure Up and How to Respond. Journal of Chemical Education, 2019, 96, 1308-1317.	2.3	5
40	Supporting the Growth and Impact of the Chemistry-Education-Research Community. Journal of Chemical Education, 2019, 96, 393-397.	2.3	5
41	Exploring Adaptations of the VisChem Approach: Advancements and Anchors toward Particle-Level Explanations. Journal of Chemical Education, 2022, 99, 1313-1325.	2.3	5
42	Data-driven activity reform: employing design research to improve scaffolding and concept development. Chemistry Education Research and Practice, 2021, 22, 136-145.	2.5	4
43	Visualizing chemistry teachers' enacted assessment design practices to better understand barriers to "best practices― Chemistry Education Research and Practice, 2021, 22, 457-475.	2.5	3
44	Announcement and Description of the <i>Journal of Chemical Education</i> Editor-in-Chief Position. Journal of Chemical Education, 2017, 94, 1183-1184.	2.3	2
45	Putting the R in CER. ACS Symposium Series, 2017, , 65-90.	0.5	2
46	Announcing the Ninth Editor-in-Chief of the Journal of Chemical Education. Journal of Chemical Education, 2018, 95, 1687-1688.	2.3	1
47	Refuting Myths about Secondary Chemistry Teaching: Getting the Facts Out to Current and Future Educators. Journal of Chemical Education, 2019, 96, 1291-1293.	2.3	1
48	Understanding Thermodynamic Control in Covalent Self-Assembly: A Mixed Synthetic–Computational Experiment for the Undergraduate Organic-Chemistry Laboratory. Journal of Chemical Education, 2019, 96, 1230-1235.	2.3	1
49	Guided inquiry activity linking thermodynamic parameters of protein unfolding to structure using differential scanning fluorimetry data in the biophysical chemistry classroom. Biochemistry and Molecular Biology Education, 2019, 47, 67-75.	1.2	1
50	Self-efficacy in introductory physics in students at single-sex and coeducational colleges. , 2013, , .		0
51	Target Inquiry. Advances in Higher Education and Professional Development Book Series, 0, , 383-416.	0.2	O