Yaofei Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5778161/publications.pdf Version: 2024-02-01

VAOFEL CHEN

#	Article	IF	CITATIONS
1	Optical fiber magnetic field sensor based on single-mode–multimode–single-mode structure and magnetic fluid. Optics Letters, 2013, 38, 3999.	1.7	229
2	High-sensitivity vector magnetic field sensor based on side-polished fiber plasmon and ferrofluid. Optics Letters, 2018, 43, 4743.	1.7	69
3	A Hybrid Multimode Interference Structure-Based Refractive Index and Temperature Fiber Sensor. IEEE Sensors Journal, 2016, 16, 331-335.	2.4	63
4	Sensor based on macrobent fiber Bragg grating structure for simultaneous measurement of refractive index and temperature. Applied Optics, 2016, 55, 791.	2.1	52
5	Side-polished few-mode fiber based surface plasmon resonance biosensor. Optics Express, 2019, 27, 11348.	1.7	52
6	Plasmonic Interface Modified with Graphene Oxide Sheets Overlayer for Sensitivity Enhancement. ACS Applied Materials & Interfaces, 2018, 10, 34916-34923.	4.0	51
7	Fiber-loop ring-down interrogated refractive index sensor based on an SNS fiber structure. Sensors and Actuators B: Chemical, 2018, 255, 2018-2022.	4.0	49
8	Long-Range Surface Plasmon Resonance Sensor Based on Side-Polished Fiber for Biosensing Applications. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25, 1-9.	1.9	48
9	A portable optical fiber SPR temperature sensor based on a smart-phone. Optics Express, 2019, 27, 25420.	1.7	48
10	Self-temperature-compensative refractometer based on singlemode–multimode–singlemode fiber structure. Sensors and Actuators B: Chemical, 2015, 212, 107-111.	4.0	45
11	Simultaneous Measurement of Refractive Index and Temperature Using a Cascaded FBG/Droplet-Like Fiber Structure. IEEE Sensors Journal, 2015, 15, 6432-6436.	2.4	45
12	Ultrasonically Patterning Silver Nanowire–Acrylate Composite for Highly Sensitive and Transparent Strain Sensors Based on Parallel Cracks. ACS Applied Materials & Interfaces, 2020, 12, 47729-47738.	4.0	41
13	Magnetic Field Sensor Based on U-Bent Single-Mode Fiber and Magnetic Fluid. IEEE Photonics Journal, 2014, 6, 1-7.	1.0	40
14	U-bent single-mode–multimode–single-mode fiber optic magnetic field sensor based on magnetic fluid. Applied Physics Express, 2014, 7, 072501.	1.1	37
15	Fiber loop ring-down cavity integrated U-bent single-mode-fiber for magnetic field sensing. Photonics Research, 2016, 4, 322.	3.4	37
16	Magnetic Nanoparticles Functionalized Few-Mode-Fiber-Based Plasmonic Vector Magnetometer. Nanomaterials, 2019, 9, 785.	1.9	37
17	A MoS ₂ nanoflower and gold nanoparticle-modified surface plasmon resonance biosensor for a sensitivity-improved immunoassay. Journal of Materials Chemistry C, 2020, 8, 6861-6868. 	2.7	35
18	Magnetic-Fluid-Coated Photonic Crystal Fiber and FBC for Magnetic Field and Temperature Sensing. IEEE Photonics Technology Letters, 2016, 28, 2665-2668.	1.3	34

YAOFEI CHEN

#	Article	IF	CITATIONS
19	High-performance fiber plasmonic sensor by engineering the dispersion of hyperbolic metamaterials composed of Ag/TiO ₂ . Optics Express, 2020, 28, 25562.	1.7	34
20	Side-Polished Single-Mode-Multimode-Single-Mode Fiber Structure for the Vector Magnetic Field Sensing. Journal of Lightwave Technology, 2020, 38, 5837-5843.	2.7	33
21	A graphene–PDMS hybrid overcoating enhanced fiber plasmonic temperature sensor with high sensitivity and fast response. Journal of Materials Chemistry C, 2020, 8, 12893-12901.	2.7	31
22	Photonic cavity enhanced high-performance surface plasmon resonance biosensor. Photonics Research, 2020, 8, 448.	3.4	30
23	An All-Fiber Optic Current Sensor Based on Ferrofluids and Multimode Interference. IEEE Sensors Journal, 2014, 14, 1749-1753.	2.4	28
24	MoS ₂ Nanosheets Modified Surface Plasmon Resonance Sensors for Sensitivity Enhancement. Advanced Optical Materials, 2019, 7, 1900479.	3.6	25
25	Sensitivity-enhanced surface plasmon sensor modified with MoSe ₂ overlayer. Optics Express, 2018, 26, 34250.	1.7	25
26	Tunable asymmetric spin splitting by black phosphorus sandwiched epsilon-near-zero-metamaterial in the terahertz region. Optics Express, 2019, 27, 15868.	1.7	24
27	Highly efficient Er/Yb-codoped fiber amplifier with an Yb-band fiber Bragg grating. Optics Letters, 2015, 40, 2634.	1.7	23
28	Titanium dioxide nanoparticle modified plasmonic interface for enhanced refractometric and biomolecular sensing. Optics Express, 2018, 26, 33226.	1.7	23
29	Simultaneous Measurement of the Refractive Index and Temperature Based on a Hybrid Fiber Interferometer. IEEE Sensors Journal, 2020, 20, 13411-13417.	2.4	22
30	Magnetic Field Sensor Based on Ferrofluid and Photonic Crystal Fiber With Offset Fusion Splicing. IEEE Photonics Technology Letters, 2016, 28, 2043-2046.	1.3	21
31	Magnetic Field and Temperature Sensing Based on a Macro-Bending Fiber Structure and an FBG. IEEE Sensors Journal, 2016, 16, 7659-7662.	2.4	19
32	Magnetic Field Sensing Based on a Ferrofluid-Coated Multimode Interferometer in a Fiber-Loop Ring-Down Cavity. IEEE Sensors Journal, 2018, 18, 3206-3210.	2.4	19
33	Sensitivity-Enhanced Fiber Plasmonic Sensor Utilizing Molybdenum Disulfide Nanosheets. Journal of Physical Chemistry C, 2019, 123, 10536-10543.	1.5	18
34	Half-side gold-coated hetero-core fiber for highly sensitive measurement of a vector magnetic field. Optics Letters, 2020, 45, 4746.	1.7	18
35	Highly efficient Er–Yb codoped double-clad fiber amplifier with an Yb-band resonant cavity. Laser Physics Letters, 2017, 14, 025105.	0.6	16
36	Optically Programmable Plateau–Rayleigh Instability for High-Resolution and Scalable Morphology Manipulation of Silver Nanowires for Flexible Optoelectronics. ACS Applied Materials & Interfaces, 2020, 12, 53984-53993.	4.0	16

YAOFEI CHEN

#	Article	IF	CITATIONS
37	One-step plasmonic welding and photolithographic patterning of silver nanowire network by UV-programable surface atom diffusion. Nano Research, 2022, 15, 2582-2591.	5.8	15
38	Optimal design of Er/Yb co-doped fiber amplifiers with an Yb-band fiber Bragg grating. Photonics Research, 2016, 4, 53.	3.4	12
39	Side Polished Fiber: A Versatile Platform for Compact Fiber Devices and Sensors. Photonic Sensors, 2023, 13, .	2.5	12
40	Wavelength Dependence of the Sensitivity of All-Fiber Refractometers Based on the Singlemode–Multimode–Singlemode Structure. IEEE Photonics Journal, 2014, 6, 1-7.	1.0	11
41	Reflective all-fiber current sensor based on magnetic fluids. Review of Scientific Instruments, 2014, 85, 083107.	0.6	11
42	All-fiber optical modulator based on no-core fiber and magnetic fluid as cladding. Chinese Physics B, 2015, 24, 014214.	0.7	11
43	Dispersion Management for Hyperbolic-Metamaterials Based Surface Plasmon Resonance Sensor Towards Extremely High Sensitivity. Journal of Lightwave Technology, 2022, 40, 887-893.	2.7	10
44	MoS2-nanoflower enhanced programmable adsorption/desorption plasmonic detection for bipolar-molecules with high sensitivity. Biosensors and Bioelectronics, 2022, 198, 113787.	5.3	10
45	Self-assembled monolayer modulated Plateau-Rayleigh instability and enhanced chemical stability of silver nanowire for invisibly patterned, stable transparent electrodes. Nano Research, 2022, 15, 4552-4562.	5.8	10
46	A Portable Smartphone-Based Vector-Magnetometer Illuminated and Imaged via a Side-Polished-Fiber Functionalized With Magnetic Fluid. IEEE Sensors Journal, 2020, 20, 1283-1289.	2.4	8
47	Numerical investigation of the thermal effect on Yb-cavity-copumped Er/Yb codoped fiber amplifiers. Applied Optics, 2018, 57, 1541.	0.9	7
48	Temperature cross-sensitivity characteristics of singlemode–multimode–singlemode fiber structure. Review of Scientific Instruments, 2015, 86, 013108.	0.6	6
49	Actively Q-switched erbium-doped fiber ring laser with a nanosecond ceramic optical switch. Laser Physics, 2014, 24, 115102.	0.6	5
50	Exploiting black phosphorus based-Tamm plasmons in the terahertz region. Optics Express, 2020, 28, 13443.	1.7	5
51	Near-infrared tunable surface plasmon resonance sensors based on graphene plasmons <i>via</i> electrostatic gating control. RSC Advances, 2021, 11, 37559-37567.	1.7	5
52	Ultrahigh-sensitive and compact temperature sensor based on no-core fiber with PMMA coating. Optics Express, 2021, 29, 37591.	1.7	4
53	Photon coupling-induced spectrum envelope modulation in the coupled resonators from Vernier effect to harmonic Vernier effect. Nanophotonics, 2022, 11, 957-966.	2.9	4
54	Synthesis and down-conversion luminescence properties of Er3+/Yb3+ co-doped AlF3–PbF2–CaF2 powders. Optical Materials, 2015, 46, 77-81.	1.7	2

YAOFEI CHEN

#	Article	IF	CITATIONS
55	Spectroscopic properties of Sm3+-doped oxy-fluoride powders with various Sm3+ concentration and sintering temperature. Optical Materials, 2015, 45, 239-245.	1.7	2
56	Cell-modified plasmonic interface for the signal-amplified detection of Cucurbitacin E. Biomedical Optics Express, 2022, 13, 274.	1.5	2
57	Cascade co-pumping — A new way of efficient pumping of high-power rare-earth co-doped fiber lasers and amplifiers. , 2017, , .		1
58	A nanodiamonds-engineered optical-fiber plasmonic interface for sensitivity-enhanced biosensing. Journal of Lightwave Technology, 2022, , 1-7.	2.7	1
59	Notice of Removal: Practical Simulation Method on Multimode-No-Core-Multimode Fiber Structure Based on the Mode Expansion. IEEE Sensors Journal, 2020, 20, 12758-12764.	2.4	0
60	Side-polished multimode interferometer for the vector magnetic field sensing. , 2021, , .		0