
Denise D Belsham

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5777304/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bisphenol A induces miR-708-5p through an ER stress-mediated mechanism altering neuronatin and neuropeptide Y expression in hypothalamic neuronal models. Molecular and Cellular Endocrinology, 2022, 539, 111480.	3.2	15
2	Spexin: Its role, regulation, and therapeutic potential in the hypothalamus. , 2022, 233, 108033.		8
3	Hypothalamic miR-1983 Targets Insulin Receptor β and the Insulin-mediated miR-1983 Increase Is Blocked by Metformin. Endocrinology, 2022, 163, .	2.8	4
4	The Regulation of Phoenixin: A Fascinating Multidimensional Peptide. Journal of the Endocrine Society, 2022, 6, bvab192.	0.2	8
5	Bisphenol S induces Agrp expression through GPER1 activation and alters transcription factor expression in immortalized hypothalamic neurons: A mechanism distinct from BPA-induced upregulation. Molecular and Cellular Endocrinology, 2022, 552, 111630.	3.2	3
6	Bisphenol A Induces <i>Agrp</i> Gene Expression in Hypothalamic Neurons through a Mechanism Involving ATF3. Neuroendocrinology, 2021, 111, 678-695.	2.5	15
7	Insulin signalling in hypothalamic neurones. Journal of Neuroendocrinology, 2021, 33, e12919.	2.6	16
8	Glia-Neuron Communication: Not a One-Way Street. Masterclass in Neuroendocrinology, 2021, , 155-180.	0.1	0
9	Hypothalamic Cell Models. , 2021, , 27-77.		0
10	Palmitateâ€mediated induction of neuropeptide Y expression occurs through intracellular metabolites and not direct exposure to proinflammatory cytokines. Journal of Neurochemistry, 2021, 159, 574-589.	3.9	10
11	Immunofluorescence of GFAP and TNF-α in the Mouse Hypothalamus. Bio-protocol, 2021, 11, e4078.	0.4	2
12	Mechanisms Driving Palmitate-Mediated Neuronal Dysregulation in the Hypothalamus. Cells, 2021, 10, 3120.	4.1	6
13	Palmitate and Nitric Oxide Regulate the Expression of Spexin and Galanin Receptors 2 and 3 in Hypothalamic Neurons. Neuroscience, 2020, 447, 41-52.	2.3	13
14	Acute effects of fatty acids on autophagy in NPY neurones. Journal of Neuroendocrinology, 2020, 32, e12900.	2.6	15
15	Palmitate differentially regulates Spexin, and its receptors Galr2 and Galr3, in GnRH neurons through mechanisms involving PKC, MAPKs, and TLR4. Molecular and Cellular Endocrinology, 2020, 518, 110991.	3.2	22
16	Central Ceramide Signaling Mediates Obesity-Induced Precocious Puberty. Cell Metabolism, 2020, 32, 951-966.e8.	16.2	49
17	BPA Differentially Regulates NPY Expression in Hypothalamic Neurons Through a Mechanism Involving Oxidative Stress. Endocrinology, 2020, 161, .	2.8	15
18	Hypothalamic reproductive neurons communicate through signal transduction to control reproduction. Molecular and Cellular Endocrinology, 2020, 518, 110971.	3.2	18

#	Article	IF	CITATIONS
19	Hope in Hopeless Times: Gearing Up to Fight the Obesity Pandemic. Endocrinology, 2020, 161, .	2.8	2
20	NAMPT and BMAL1 Are Independently Involved in the Palmitate-Mediated Induction of Neuroinflammation in Hypothalamic Neurons. Frontiers in Endocrinology, 2020, 11, 351.	3.5	10
21	Analysis of Western diet, palmitate and BMAL1 regulation of neuropeptide Y expression in the murine hypothalamus and BMAL1 knockout cell models. Molecular and Cellular Endocrinology, 2020, 507, 110773.	3.2	17
22	3â€carboxyâ€4â€methylâ€5â€propylâ€2â€furanpropanoic acid (CMPF) prevents high fat dietâ€induced insulin re via maintenance of hepatic lipid homeostasis. Diabetes, Obesity and Metabolism, 2019, 21, 61-72.	esistance 4.4	13
23	Bisphenol A induces Pomc gene expression through neuroinflammatory and PPARÎ ³ nuclear receptor-mediated mechanisms in POMC-expressing hypothalamic neuronal models. Molecular and Cellular Endocrinology, 2019, 479, 12-19.	3.2	21
24	Hypothalamic miR-30 regulates puberty onset via repression of the puberty-suppressing factor, Mkrn3. PLoS Biology, 2019, 17, e3000532.	5.6	42
25	Direct effects of antipsychotic drugs on insulin, energy sensing and inflammatory pathways in hypothalamic mouse neurons. Psychoneuroendocrinology, 2019, 109, 104400.	2.7	15
26	Regulation of Gpr173 expression, a putative phoenixin receptor, by saturated fatty acid palmitate and endocrine-disrupting chemical bisphenol A through a p38-mediated mechanism in immortalized hypothalamic neurons. Molecular and Cellular Endocrinology, 2019, 485, 54-60.	3.2	18
27	Antipsychotics differentially regulate insulin, energy sensing, and inflammation pathways in hypothalamic rat neurons. Psychoneuroendocrinology, 2019, 104, 42-48.	2.7	33
28	Tumour necrosis factor α induces neuroinflammation and insulin resistance in immortalised hypothalamic neurones through independent pathways. Journal of Neuroendocrinology, 2019, 31, e12678.	2.6	19
29	Bisphenol A Alters <i>Bmal1</i> , <i>Per2</i> , and <i>Rev-Erba</i> mRNA and Requires Bmal1 to Increase Neuropeptide Y Expression in Hypothalamic Neurons. Endocrinology, 2019, 160, 181-192.	2.8	31
30	SUN-482 Nitric Oxide Induces Spexin (Spx), Galanin Receptor 2 (GalR2), and Galanin Receptor 3 (GalR3) mRNA Independently of the cGMP/PKG Pathway and Enhances C/EBP-β Binding to the Spx 5' Regulatory Region. Journal of the Endocrine Society, 2019, 3, .	0.2	0
31	SUN-LB018 Role of BMAL1 in Western Diet-Induced Disruption of Circadian Hypothalamic Feeding Neuropeptides. Journal of the Endocrine Society, 2019, 3, .	0.2	Ο
32	SUN-475 Analysis of Palmitate- and Bisphenol A-Mediated Changes in MicroRNAs Targeting the Novel Reproductive Peptide Phoenixin and Its Receptor Gpr173 in Hypothalamic Cell Lines. Journal of the Endocrine Society, 2019, 3, .	0.2	0
33	SUN-467 Vitamin B6 and N-Acetylcysteine Protect Hypothalamic Neurons from Bisphenol A-Mediated Induction of Neuropeptide Y Gene Expression. Journal of the Endocrine Society, 2019, 3, .	0.2	0
34	Phoenixin: uncovering its receptor, signaling and functions. Acta Pharmacologica Sinica, 2018, 39, 774-778.	6.1	31
35	Palmitate induces neuroinflammation, ER stress, and Pomc mRNA expression in hypothalamic mHypoA-POMC/GFP neurons through novel mechanisms that are prevented by oleate. Molecular and Cellular Endocrinology, 2018, 472, 40-49.	3.2	44
36	Phoenixin Expression Is Regulated by the Fatty Acids Palmitate, Docosahexaenoic Acid and Oleate, and the Endocrine Disrupting Chemical Bisphenol A in Immortalized Hypothalamic Neurons. Frontiers in Neuroscience, 2018, 12, 838.	2.8	26

#	Article	IF	CITATIONS
37	Palmitate Induces an Anti-Inflammatory Response in Immortalized Microglial BV-2 and IMG Cell Lines that Decreases TNFI± Levels in mHypoE-46 Hypothalamic Neurons in Co-Culture. Neuroendocrinology, 2018, 107, 387-399.	2.5	20
38	Role of the saturated fatty acid palmitate in the interconnected hypothalamic control of energy homeostasis and biological rhythms. American Journal of Physiology - Endocrinology and Metabolism, 2018, 315, E133-E140.	3.5	13
39	Diet-induced cellular neuroinflammation in the hypothalamus: Mechanistic insights from investigation of neurons and microglia. Molecular and Cellular Endocrinology, 2016, 438, 18-26.	3.2	39
40	Nitric Oxide Exerts Basal and Insulin-Dependent Anorexigenic Actions in POMC Hypothalamic Neurons. Molecular Endocrinology, 2016, 30, 402-416.	3.7	18
41	Phoenixin Activates Immortalized GnRH and Kisspeptin Neurons Through the Novel Receptor GPR173. Molecular Endocrinology, 2016, 30, 872-888.	3.7	89
42	Nutrient-sensing mechanisms in hypothalamic cell models: neuropeptide regulation and neuroinflammation in male- and female-derived cell lines. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2016, 311, R217-R221.	1.8	5
43	Signaling in the hypothalamus: New concepts. Molecular and Cellular Endocrinology, 2016, 438, 1-2.	3.2	0
44	Divergent Regulation of ER and Kiss Genes by 17β-Estradiol in Hypothalamic ARC Versus AVPV Models. Molecular Endocrinology, 2016, 30, 217-233.	3.7	47
45	Induction of Gnrh mRNA expression by the ï‰-3 polyunsaturated fatty acid docosahexaenoic acid and the saturated fatty acid palmitate in a GnRH-synthesizing neuronal cell model, mHypoA-GnRH/GFP. Molecular and Cellular Endocrinology, 2016, 426, 125-135.	3.2	34
46	Glucose Alters Per2 Rhythmicity Independent of AMPK, Whereas AMPK Inhibitor Compound C Causes Profound Repression of Clock Genes and AgRP in mHypoE-37 Hypothalamic Neurons. PLoS ONE, 2016, 11, e0146969.	2.5	24
47	Beneficial Effects of Metformin and/or Salicylate on Palmitate- or TNFα-Induced Neuroinflammatory Marker and Neuropeptide Gene Regulation in Immortalized NPY/AgRP Neurons. PLoS ONE, 2016, 11, e0166973.	2.5	26
48	Impact of nutrients on circadian rhythmicity. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2015, 308, R337-R350.	1.8	159
49	Delineating the regulation of energy homeostasis using hypothalamic cell models. Frontiers in Neuroendocrinology, 2015, 36, 130-149.	5.2	13
50	Differential effects of omega-3 fatty acid docosahexaenoic acid and palmitate on the circadian transcriptional profile of clock genes in immortalized hypothalamic neurons. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2014, 307, R1049-R1060.	1.8	39
51	Glucocorticoid receptor-mediated regulation of Rfrp (GnIH) and Gpr147 (GnIH-R) synthesis in immortalized hypothalamic neurons. Molecular and Cellular Endocrinology, 2014, 384, 23-31.	3.2	38
52	Cellular insulin resistance disrupts hypothalamic mHypoA-POMC/GFP neuronal signaling pathways. Journal of Endocrinology, 2014, 220, 13-24.	2.6	29
53	Isolation and Immortalization of MIP-GFP Neurons From the Hypothalamus. Endocrinology, 2014, 155, 2314-2319.	2.8	6
54	Molecular Basis for the Activation of Gonadotropin-Inhibitory Hormone Gene Transcription by Corticosterone. Endocrinology, 2014, 155, 1817-1826.	2.8	88

#	Article	IF	CITATIONS
55	Activation of the omega-3 fatty acid receptor GPR120 mediates anti-inflammatory actions in immortalized hypothalamic neurons. Journal of Neuroinflammation, 2014, 11, 60.	7.2	90
56	Glucose sensing mechanisms in hypothalamic cell models: Glucose inhibition of AgRP synthesis and secretion. Molecular and Cellular Endocrinology, 2014, 382, 262-270.	3.2	34
57	Glucose responsiveness in a novel adult-derived GnRH cell line, mHypoA-GnRH/GFP: Involvement of AMP-activated protein kinase. Molecular and Cellular Endocrinology, 2013, 377, 65-74.	3.2	21
58	Cellular Insulin Resistance Disrupts Leptin-Mediated Control of Neuronal Signaling and Transcription. Molecular Endocrinology, 2013, 27, 990-1003.	3.7	37
59	The Wnt Signaling Pathway Effector TCF7L2 Controls Gut and Brain Proglucagon Gene Expression and Glucose Homeostasis. Diabetes, 2013, 62, 789-800.	0.6	98
60	Tumor Necrosis Factor–Neuropeptide Y Cross Talk Regulates Inflammation, Epithelial Barrier Functions, and Colonic Motility. Inflammatory Bowel Diseases, 2013, 19, 2535-2546.	1.9	53
61	The Cytokine Ciliary Neurotrophic Factor (CNTF) Activates Hypothalamic Urocortin-Expressing Neurons Both In Vitro and In Vivo. PLoS ONE, 2013, 8, e61616.	2.5	9
62	Glucagon-Like Peptide-2 Directly Regulates Hypothalamic Neurons Expressing Neuropeptides Linked to Appetite Control in Vivo and in Vitro. Endocrinology, 2012, 153, 2385-2397.	2.8	18
63	Serotonin (5-HT) Activation of Immortalized Hypothalamic Neuronal Cells Through the 5-HT1B Serotonin Receptor. Endocrinology, 2012, 153, 4862-4873.	2.8	7
64	Direct Regulation of the Proglucagon Gene by Insulin, Leptin, and cAMP in Embryonic versus Adult Hypothalamic Neurons. Molecular Endocrinology, 2012, 26, 1339-1355.	3.7	12
65	Glucagon-Like Peptide-1 Receptor Agonist, Exendin-4, Regulates Feeding-Associated Neuropeptides in Hypothalamic Neurons in Vivo and in Vitro. Endocrinology, 2012, 153, 2208-2222.	2.8	57
66	Identification of a novel Brain Derived Neurotrophic Factor (BDNF)-inhibitory factor: Regulation of BDNF by Teneurin C-terminal Associated Peptide (TCAP)-1 in immortalized embryonic mouse hypothalamic cells. Regulatory Peptides, 2012, 174, 79-89.	1.9	17
67	Gene array analysis of embryonic- versus adult-derived hypothalamic NPY-expressing cell lines. Molecular and Cellular Endocrinology, 2012, 358, 116-126.	3.2	11
68	Synchronization of the circadian rhythm generator and the effects of glucagon on hypothalamic mouse neurons detected by acoustic wave propagation. Analyst, The, 2011, 136, 2786.	3.5	5
69	Peroxisome proliferation–associated control of reactive oxygen species sets melanocortin tone and feeding in diet-induced obesity. Nature Medicine, 2011, 17, 1121-1127.	30.7	239
70	Interfacial behavior of immortalized hypothalamic mouse neurons detected by acoustic wave propagation. Analyst, The, 2011, 136, 4412.	3.5	4
71	Neuronal suppressor of cytokine signaling-3 deficiency enhances hypothalamic leptin-dependent phosphatidylinositol 3-kinase signaling. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2011, 300, R1185-R1193.	1.8	24
72	Palmitate alters the rhythmic expression of molecular clock genes and orexigenic neuropeptide Y mRNA levels within immortalized, hypothalamic neurons. Biochemical and Biophysical Research Communications, 2011, 413, 414-419.	2.1	45

#	Article	IF	CITATIONS
73	Generation of Immortal Cell Lines from the Adult Pituitary: Role of cAMP on Differentiation of SOX2-Expressing Progenitor Cells to Mature Gonadotropes. PLoS ONE, 2011, 6, e27799.	2.5	13
74	Leptin differentially regulates NPY secretion in hypothalamic cell lines through distinct intracellular signal transduction pathways. Regulatory Peptides, 2011, 167, 192-200.	1.9	33
75	Cellular Leptin Resistance Impairs the Leptin-Mediated Suppression of Neuropeptide Y Secretion in Hypothalamic Neurons. Endocrinology, 2011, 152, 4138-4147.	2.8	41
76	Immortalized neurons for the study of hypothalamic function. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2011, 300, R1030-R1052.	1.8	36
77	Palmitate Attenuates Insulin Signaling and Induces Endoplasmic Reticulum Stress and Apoptosis in Hypothalamic Neurons: Rescue of Resistance and Apoptosis through Adenosine 5′ Monophosphate-Activated Protein Kinase Activation. Endocrinology, 2010, 151, 576-585.	2.8	189
78	Nutrient sensing and insulin signaling in neuropeptide-expressing immortalized, hypothalamic neurons: A cellular model of insulin resistance. Cell Cycle, 2010, 9, 3206-3213.	2.6	13
79	Kisspeptin Directly Regulates Neuropeptide Y Synthesis and Secretion via the ERK1/2 and p38 Mitogen-Activated Protein Kinase Signaling Pathways in NPY-Secreting Hypothalamic Neurons. Endocrinology, 2010, 151, 5038-5047.	2.8	50
80	Histone H2AX: The missing link in AIF-mediated caspase-independent programmed necrosis. Cell Cycle, 2010, 9, 3186-3193.	2.6	86
81	Central Insulin Signaling Is Attenuated by Long-Term Insulin Exposure via Insulin Receptor Substrate-1 Serine Phosphorylation, Proteasomal Degradation, and Lysosomal Insulin Receptor Degradation. Endocrinology, 2010, 151, 75-84.	2.8	68
82	Depolarization of surface-attached hypothalamic mouse neurons studied by acoustic wave (thickness) Tj ETQq0	0	Ovgrlock 10 1
83	Rhythmic clock and neuropeptide gene expression in hypothalamic mHypoE-44 neurons. Molecular and Cellular Endocrinology, 2010, 323, 298-306.	3.2	16
84	Hypothalamic cell lines to investigate neuroendocrine control mechanisms. Frontiers in Neuroendocrinology, 2009, 30, 405-423.	5.2	46
85	Rac1 and Rac2 in Osteoclastogenesis: A Cell Immortalization Model. Calcified Tissue International, 2009, 85, 257-266.	3.1	9
86	Ciliary neurotrophic factor recruitment of glucagonâ€like peptideâ€1 mediates neurogenesis, allowing immortalization of adult murine hypothalamic neurons. FASEB Journal, 2009, 23, 4256-4265.	0.5	92
87	Neuropeptide Y induces gonadotropin-releasing hormone gene expression directly and through conditioned medium from mHypoE-38 NPY neurons. Regulatory Peptides, 2009, 156, 96-103.	1.9	20
88	Insulin directly regulates NPY and AgRP gene expression via the MAPK MEK/ERK signal transduction pathway in mHypoE-46 hypothalamic neurons. Molecular and Cellular Endocrinology, 2009, 307, 99-108.	3.2	87
89	Regulation of brain insulin mRNA by glucose and glucagon-like peptide 1. Biochemical and Biophysical Research Communications, 2008, 376, 694-699.	2.1	28
00	Insulin Receptor Substrate 4 Couples the Leptin Receptor to Multiple Signaling Pathways. Molecular	0.5	

90Insulin Receptor Substrate 4 Couples the Leptin Receptor to Multiple Signaling Pathways. Molecular
Endocrinology, 2008, 22, 965-977.3.756

#	Article	IF	CITATIONS
91	Estrogen Facilitates both Phosphatidylinositol 3-Kinase/Akt and ERK1/2 Mitogen-Activated Protein Kinase Membrane Signaling Required for Long-Term Neuropeptide Y Transcriptional Regulation in Clonal, Immortalized Neurons. Journal of Neuroscience, 2008, 28, 6473-6482.	3.6	56
92	Vascular circadian rhythms in a mouse vascular smooth muscle cell line (Movas-1). American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2008, 295, R1529-R1538.	1.8	62
93	Diurnal profiling of neuroendocrine genes in murine heart, and shift in proopiomelanocortin gene expression with pressure-overload cardiac hypertrophy. Journal of Molecular Endocrinology, 2008, 41, 117-124.	2.5	26
94	Inhibition of Agouti-Related Peptide Expression by Glucose in a Clonal Hypothalamic Neuronal Cell Line Is Mediated by Glycolysis, Not Oxidative Phosphorylation. Endocrinology, 2008, 149, 703-710.	2.8	40
95	Glucose regulates AMP-activated protein kinase activity and gene expression in clonal, hypothalamic neurons expressing proopiomelanocortin: additive effects of leptin or insulin. Journal of Endocrinology, 2007, 192, 605-614.	2.6	64
96	Adipokine Gene Expression in a Novel Hypothalamic Neuronal Cell Line: Resistin-Dependent Regulation of Fasting-Induced Adipose Factor and SOCS-3. Neuroendocrinology, 2007, 85, 232-241.	2.5	25
97	Label-free detection of neuron–drug interactions using acoustic and Kelvin vibrational fields. Analyst, The, 2007, 132, 242-255.	3.5	17
98	Teneurin carboxy (C)-terminal associated peptide-1 inhibits alkalosis-associated necrotic neuronal death by stimulating superoxide dismutase and catalase activity in immortalized mouse hypothalamic cells. Brain Research, 2007, 1176, 27-36.	2.2	37
99	Hormonal Regulation of Clonal, Immortalized Hypothalamic Neurons Expressing Neuropeptides Involved in Reproduction and Feeding. Molecular Neurobiology, 2007, 35, 182-194.	4.0	8
100	Coordinate Regulation of Neuropeptide Y and Agouti-Related Peptide Gene Expression by Estrogen Depends on the Ratio of Estrogen Receptor (ER) α to ERβ in Clonal Hypothalamic Neurons. Molecular Endocrinology, 2006, 20, 2080-2092.	3.7	102
101	Leptin signaling in neurotensin neurons involves STAT, MAP kinases ERK1/2, and p38 through câ€Fos and ATF1. FASEB Journal, 2006, 20, 2654-2656.	0.5	71
102	Functional Cross-modulation between SOCS Proteins Can Stimulate Cytokine Signaling. Journal of Biological Chemistry, 2006, 281, 32953-32966.	3.4	95
103	Anorexigenic Hormones Leptin, Insulin, and Â-Melanocyte-Stimulating Hormone Directly Induce Neurotensin (NT) Gene Expression in Novel NT-Expressing Cell Models. Journal of Neuroscience, 2005, 25, 9497-9506.	3.6	53
104	Gonadotropinâ€Releasing Hormone: Gene Evolution, Expression, and Regulation. Vitamins and Hormones, 2005, 71, 59-94.	1.7	33
105	Teneurin proteins possess a carboxy terminal sequence with neuromodulatory activity. Molecular Brain Research, 2005, 133, 253-265.	2.3	81
106	Generation of a Phenotypic Array of Hypothalamic Neuronal Cell Models to Study Complex Neuroendocrine Disorders. Endocrinology, 2004, 145, 393-400.	2.8	186
107	Repression of Gonadotropin-Releasing Hormone (GnRH) Gene Expression by Melatonin May Involve Transcription Factors COUP-TFI and C/EBP Beta Binding at the GnRH Enhancer. Neuroendocrinology, 2004, 79, 63-72.	2.5	25
108	IGF-I signaling prevents dehydroepiandrosterone (DHEA)-induced apoptosis in hypothalamic neurons. Molecular and Cellular Endocrinology, 2004, 214, 127-135.	3.2	24

#	Article	IF	CITATIONS
109	Expression of Circadian Rhythm Genes in Gonadotropin-Releasing Hormone-Secreting GT1-7 Neurons. Endocrinology, 2003, 144, 5285-5292.	2.8	70
110	Analysis of a repressor region in the human neuropeptide Y gene that binds Oct-1 and Pbx-1 in GT1-7 neurons. Biochemical and Biophysical Research Communications, 2003, 307, 847-854.	2.1	12
111	Evidence that dehydroepiandrosterone, DHEA, directly inhibits GnRH gene expression in GT1–7 hypothalamic neurons. Molecular and Cellular Endocrinology, 2003, 203, 13-23.	3.2	15
112	Differential Regulation of Gonadotropin-Releasing Hormone Secretion and Gene Expression by Androgen: Membrane Versus Nuclear Receptor Activation. Molecular Endocrinology, 2002, 16, 2592-2602.	3.7	50
113	Melatonin Receptor Activation Regulates GnRH Gene Expression and Secretion in GT1–7 GnRH Neurons. Journal of Biological Chemistry, 2002, 277, 251-258.	3.4	111
114	Cyclical Regulation of GnRH Gene Expression in GT1–7 GnRH-Secreting Neurons by Melatonin. Endocrinology, 2001, 142, 4711-4720.	2.8	96
115	Cyclical Regulation of GnRH Gene Expression in GT1-7 GnRH-Secreting Neurons by Melatonin. Endocrinology, 2001, 142, 4711-4720.	2.8	25
116	Transcription Factors Oct-1 and C/EBPβ (CCAAT/Enhancer-Binding Protein-β) Are Involved in the Glutamate/Nitric Oxide/cyclic-Guanosine 5′-Monophosphate-Mediated Repression of Gonadotropin-Releasing Hormone Gene Expression. Molecular Endocrinology, 2000, 14, 212-228.	3.7	77
117	Estrogen Directly Represses Gonadotropin-Releasing Hormone (GnRH) Gene Expression in Estrogen Receptor-α (ERα)- and ERβ-Expressing GT1–7 GnRH Neurons1. Endocrinology, 1999, 140, 5045-5053.	2.8	163
118	Estrogen Directly Represses Gonadotropin-Releasing Hormone (GnRH) Gene Expression in Estrogen Receptor-Â (ERÂ)- and ERÂ-Expressing GT1-7 GnRH Neurons. Endocrinology, 1999, 140, 5045-5053.	2.8	54
119	Regulation of Gonadotropin-Releasing Hormone (GnRH) Gene Expression by 5α-Dihydrotestosterone in GnRH-Secreting GT1–7 Hypothalamic Neurons ¹ . Endocrinology, 1998, 139, 1108-1114.	2.8	70
120	Regulation of Gonadotropin-Releasing Hormone (GnRH) Gene Expression by 5Â-Dihydrotestosterone in GnRH-Secreting GT1-7 Hypothalamic Neurons. Endocrinology, 1998, 139, 1108-1114.	2.8	21