Nathaniel L Scholz

List of Publications by Citations

Source: https://exaly.com/author-pdf/577716/nathaniel-l-scholz-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

46 85 7,374 94 h-index g-index citations papers 8,249 6.4 5.84 97 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
94	Defects in cardiac function precede morphological abnormalities in fish embryos exposed to polycyclic aromatic hydrocarbons. <i>Toxicology and Applied Pharmacology</i> , 2004 , 196, 191-205	4.6	611
93	Deepwater Horizon crude oil impacts the developing hearts of large predatory pelagic fish. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, E1510-8	11.5	304
92	Aryl hydrocarbon receptor-independent toxicity of weathered crude oil during fish development. <i>Environmental Health Perspectives</i> , 2005 , 113, 1755-62	8.4	290
91	Sublethal exposure to crude oil during embryonic development alters cardiac morphology and reduces aerobic capacity in adult fish. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 7086-90	11.5	253
90	Developmental toxicity of 4-ring polycyclic aromatic hydrocarbons in zebrafish is differentially dependent on AH receptor isoforms and hepatic cytochrome P4501A metabolism. <i>Toxicology and Applied Pharmacology</i> , 2006 , 217, 308-21	4.6	242
89	Crude oil impairs cardiac excitation-contraction coupling in fish. <i>Science</i> , 2014 , 343, 772-6	33.3	241
88	The synergistic toxicity of pesticide mixtures: implications for risk assessment and the conservation of endangered Pacific salmon. <i>Environmental Health Perspectives</i> , 2009 , 117, 348-53	8.4	230
87	Olfactory toxicity in fishes. <i>Aquatic Toxicology</i> , 2010 , 96, 2-26	5.1	218
86	Fish embryos are damaged by dissolved PAHs, not oil particles. <i>Aquatic Toxicology</i> , 2008 , 88, 121-7	5.1	214
85	Cardiac arrhythmia is the primary response of embryonic Pacific herring (Clupea pallasi) exposed to crude oil during weathering. <i>Environmental Science & Environmental Scienc</i>	10.3	180
84	Neural defects and cardiac arrhythmia in fish larvae following embryonic exposure to 2,2\$4,4\$tetrabromodiphenyl ether (PBDE 47). <i>Aquatic Toxicology</i> , 2007 , 82, 296-307	5.1	180
83	Comparative thresholds for acetylcholinesterase inhibition and behavioral impairment in coho salmon exposed to chlorpyrifos. <i>Environmental Toxicology and Chemistry</i> , 2005 , 24, 136-45	3.8	169
82	Acute embryonic or juvenile exposure to Deepwater Horizon crude oil impairs the swimming performance of mahi-mahi (Coryphaena hippurus). <i>Environmental Science & amp; Technology</i> , 2014 , 48, 7053-61	10.3	167
81	Diazinon disrupts antipredator and homing behaviors in chinook salmon (Oncorhynchus tshawytscha). <i>Canadian Journal of Fisheries and Aquatic Sciences</i> , 2000 , 57, 1911-1918	2.4	162
80	Exxon Valdez to Deepwater Horizon: comparable toxicity of both crude oils to fish early life stages. <i>Aquatic Toxicology</i> , 2013 , 142-143, 303-16	5.1	151
79	The developmental neurotoxicity of fipronil: notochord degeneration and locomotor defects in zebrafish embryos and larvae. <i>Toxicological Sciences</i> , 2006 , 92, 270-8	4.4	143
78	A sensory system at the interface between urban stormwater runoff and salmon survival. <i>Environmental Science & Environmental Science & amp; Technology</i> , 2007 , 41, 2998-3004	10.3	142

(2018-2021)

77	A ubiquitous tire rubber-derived chemical induces acute mortality in coho salmon. <i>Science</i> , 2021 , 371, 185-189	33.3	140
76	Cardiac toxicity of 5-ring polycyclic aromatic hydrocarbons is differentially dependent on the aryl hydrocarbon receptor 2 isoform during zebrafish development. <i>Toxicology and Applied Pharmacology</i> , 2011 , 257, 242-9	4.6	135
75	The effects of weathering and chemical dispersion on Deepwater Horizon crude oil toxicity to mahi-mahi (Coryphaena hippurus) early life stages. <i>Science of the Total Environment</i> , 2016 , 543, 644-651	10.2	129
74	Sublethal effects of copper on coho salmon: impacts on nonoverlapping receptor pathways in the peripheral olfactory nervous system. <i>Environmental Toxicology and Chemistry</i> , 2003 , 22, 2266-74	3.8	129
73	Effects of the synthetic estrogen, 17alpha-ethinylestradiol, on aggression and courtship behavior in male zebrafish (Danio rerio). <i>Aquatic Toxicology</i> , 2009 , 91, 346-54	5.1	127
72	Chemical orientation of lobsters, homarus americanus, in turbulent odor plumes. <i>Journal of Chemical Ecology</i> , 1991 , 17, 1293-307	2.7	127
71	Unexpectedly high mortality in Pacific herring embryos exposed to the 2007 Cosco Busan oil spill in San Francisco Bay. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, E51-8	11.5	111
70	Very low embryonic crude oil exposures cause lasting cardiac defects in salmon and herring. <i>Scientific Reports</i> , 2015 , 5, 13499	4.9	101
69	A fish of many scales: extrapolating sublethal pesticide exposures to the productivity of wild salmon populations 2009 , 19, 2004-15		93
68	Dissolved copper triggers cell death in the peripheral mechanosensory system of larval fish. <i>Environmental Toxicology and Chemistry</i> , 2006 , 25, 597-603	3.8	89
67	Chemosensory deprivation in juvenile coho salmon exposed to dissolved copper under varying water chemistry conditions. <i>Environmental Science & Environmental Science & Enviro</i>	10.3	86
66	Odor-evoked field potentials as indicators of sublethal neurotoxicity in juvenile coho salmon (Oncorhynchus kisutch) exposed to copper, chlorpyrifos, or esfenvalerate. <i>Canadian Journal of Fisheries and Aquatic Sciences</i> , 2004 , 61, 404-413	2.4	85
65	The influence of heart developmental anatomy on cardiotoxicity-based adverse outcome pathways in fish. <i>Aquatic Toxicology</i> , 2016 , 177, 515-25	5.1	84
64	Morphological abnormalities and sensorimotor deficits in larval fish exposed to dissolved saxitoxin. <i>Aquatic Toxicology</i> , 2004 , 66, 159-70	5.1	84
63	A Novel Cardiotoxic Mechanism for a Pervasive Global Pollutant. Scientific Reports, 2017, 7, 41476	4.9	8o
62	The NO/cGMP pathway and the development of neural networks in postembryonic lobsters. <i>Journal of Neurobiology</i> , 1998 , 34, 208-26		8o
61	Corresponding morphological and molecular indicators of crude oil toxicity to the developing hearts of mahi mahi. <i>Scientific Reports</i> , 2015 , 5, 17326	4.9	77
60	Using High-Resolution Mass Spectrometry to Identify Organic Contaminants Linked to Urban Stormwater Mortality Syndrome in Coho Salmon. <i>Environmental Science & Description (Color)</i> 2018, 52, 10317-10327	10.3	75

59	Low-level copper exposures increase visibility and vulnerability of juvenile coho salmon to cutthroat trout predators 2012 , 22, 1460-71		71
58	Recurrent die-offs of adult coho salmon returning to spawn in Puget Sound lowland urban streams. <i>PLoS ONE</i> , 2011 , 6, e28013	3.7	64
57	Novel adverse outcome pathways revealed by chemical genetics in a developing marine fish. <i>ELife</i> , 2017 , 6,	8.9	62
56	Soil bioretention protects juvenile salmon and their prey from the toxic impacts of urban stormwater runoff. <i>Chemosphere</i> , 2015 , 132, 213-9	8.4	60
55	Development of suspect and non-target screening methods for detection of organic contaminants in highway runoff and fish tissue with high-resolution time-of-flight mass spectrometry. <i>Environmental Sciences: Processes and Impacts</i> , 2017 , 19, 1185-1196	4.3	59
54	A Perspective on Modern Pesticides, Pelagic Fish Declines, and Unknown Ecological Resilience in Highly Managed Ecosystems. <i>BioScience</i> , 2012 , 62, 428-434	5.7	58
53	Pyrethroid insecticides in urban salmon streams of the Pacific Northwest. <i>Environmental Pollution</i> , 2011 , 159, 3051-6	9.3	56
52	Pesticides, aquatic food webs, and the conservation of Pacific salmon. <i>Frontiers in Ecology and the Environment</i> , 2010 , 8, 475-482	5.5	53
51	Oil spills and fish health: exposing the heart of the matter. <i>Journal of Exposure Science and Environmental Epidemiology</i> , 2011 , 21, 3-4	6.7	50
50	Molecular underpinnings of motor pattern generation: differential targeting of shal and shaker in the pyloric motor system. <i>Journal of Neuroscience</i> , 2000 , 20, 6619-30	6.6	49
49	Elevated temperatures increase the toxicity of pesticide mixtures to juvenile coho salmon. <i>Aquatic Toxicology</i> , 2014 , 146, 38-44	5.1	48
48	Copper-induced olfactory toxicity in salmon and steelhead: extrapolation across species and rearing environments. <i>Aquatic Toxicology</i> , 2011 , 101, 295-7	5.1	46
47	Zebrafish and clean water technology: assessing soil bioretention as a protective treatment for toxic urban runoff. <i>Science of the Total Environment</i> , 2014 , 500-501, 173-80	10.2	45
46	Dissolved saxitoxin causes transient inhibition of sensorimotor function in larval Pacific herring (Clupea harengus pallasi). <i>Marine Biology</i> , 2005 , 147, 1393-1402	2.5	45
45	Life Histories, Salinity Zones, and Sublethal Contributions of Contaminants to Pelagic Fish Declines Illustrated with a Case Study of San Francisco Estuary, California, USA. <i>Estuaries and Coasts</i> , 2012 , 35, 603-621	2.8	44
44	Estimating the future decline of wild coho salmon populations resulting from early spawner die-offs in urbanizing watersheds of the Pacific Northwest, USA. <i>Integrated Environmental Assessment and Management</i> , 2011 , 7, 648-56	2.5	43
43	Neural network partitioning by NO and cGMP. Journal of Neuroscience, 2001, 21, 1610-8	6.6	43
42	Dose-additive inhibition of chinook salmon acetylcholinesterase activity by mixtures of organophosphate and carbamate insecticides. <i>Environmental Toxicology and Chemistry</i> , 2006 , 25, 1200-	7 ^{3.8}	42

(2016-2012)

41	Potent phototoxicity of marine bunker oil to translucent herring embryos after prolonged weathering. <i>PLoS ONE</i> , 2012 , 7, e30116	3.7	41
40	Effects of water hardness, alkalinity, and dissolved organic carbon on the toxicity of copper to the lateral line of developing fish. <i>Environmental Toxicology and Chemistry</i> , 2009 , 28, 1455-61	3.8	40
39	Transcriptional impact of organophosphate and metal mixtures on olfaction: copper dominates the chlorpyrifos-induced response in adult zebrafish. <i>Aquatic Toxicology</i> , 2011 , 102, 205-15	5.1	38
38	Nitric oxide and peptide neurohormones activate cGMP synthesis in the crab stomatogastric nervous system. <i>Journal of Neuroscience</i> , 1996 , 16, 1614-22	6.6	37
37	Coho salmon spawner mortality in western US urban watersheds: bioinfiltration prevents lethal storm water impacts. <i>Journal of Applied Ecology</i> , 2016 , 53, 398-407	5.8	36
36	Natural sunlight and residual fuel oils are an acutely lethal combination for fish embryos. <i>Aquatic Toxicology</i> , 2010 , 99, 56-64	5.1	36
35	Expression of nitric oxide synthase and nitric oxide-sensitive guanylate cyclase in the crustacean cardiac ganglion. <i>Journal of Comparative Neurology</i> , 2002 , 454, 158-67	3.4	33
34	Roads to ruin: conservation threats to a sentinel species across an urban gradient 2017 , 27, 2382-2396		32
33	Landscape ecotoxicology of coho salmon spawner mortality in urban streams. <i>PLoS ONE</i> , 2011 , 6, e2347	24 .7	32
32	Confirmation of Stormwater Bioretention Treatment Effectiveness Using Molecular Indicators of Cardiovascular Toxicity in Developing Fish. <i>Environmental Science & Environmental Science & Environment</i>	10.3	28
31	Behavioral impairment and increased predation mortality in cutthroat trout exposed to carbaryl. Marine Ecology - Progress Series, 2007, 329, 1-11	2.6	27
30	Interspecies variation in the susceptibility of adult Pacific salmon to toxic urban stormwater runoff. <i>Environmental Pollution</i> , 2018 , 238, 196-203	9.3	26
29	Interactive neurobehavioral toxicity of diazinon, malathion, and ethoprop to juvenile coho salmon. <i>Environmental Science & Environmental Science & En</i>	10.3	26
28	Embryonic Crude Oil Exposure Impairs Growth and Lipid Allocation in a Keystone Arctic Forage Fish. <i>IScience</i> , 2019 , 19, 1101-1113	6.1	24
27	Identification of nitric oxide-sensitive and -insensitive forms of cytoplasmic guanylate cyclase. <i>Journal of Neurochemistry</i> , 1997 , 69, 1650-60	6	20
26	A modeled comparison of direct and food web-mediated impacts of common pesticides on Pacific salmon. <i>PLoS ONE</i> , 2014 , 9, e92436	3.7	17
25	Predicted transport of pyrethroid insecticides from an urban landscape to surface water. Environmental Toxicology and Chemistry, 2013 , 32, 2469-77	3.8	17
24	Severe Coal Tar Sealcoat Runoff Toxicity to Fish Is Prevented by Bioretention Filtration. <i>Environmental Science & Environmental Science & Environment</i>	10.3	16

23	In response: scaling polycyclic aromatic hydrocarbon toxicity to fish early life stages: a governmental perspective. <i>Environmental Toxicology and Chemistry</i> , 2015 , 34, 459-61	3.8	13
22	Barging Effects on Sensory Systems of Chinook Salmon Smolts. <i>Transactions of the American Fisheries Society</i> , 2009 , 138, 777-789	1.7	13
21	An urban stormwater runoff mortality syndrome in juvenile coho salmon. <i>Aquatic Toxicology</i> , 2019 , 214, 105231	5.1	12
20	The challenge: "bridging the gap" with fish: advances in assessing exposure and effects across biological scales. <i>Environmental Toxicology and Chemistry</i> , 2015 , 34, 459	3.8	11
19	Chapter XI Invertebrate models for studying NO-mediated signaling. <i>Handbook of Chemical Neuroanatomy</i> , 2000 , 17, 417-441		11
18	Treading Water: Tire Wear Particle Leachate Recreates an Urban Runoff Mortality Syndrome in Coho but Not Chum Salmon. <i>Environmental Science & Enp: Technology</i> , 2021 , 55, 11767-11774	10.3	11
17	Environmental Pollution and the Fish Heart. Fish Physiology, 2017, 36, 373-433	2	10
16	Evaluating the Effects of Forestry Herbicides on Fish Development Using Rapid Phenotypic Screens. <i>North American Journal of Fisheries Management</i> , 2009 , 29, 975-984	1.1	10
15	Case Study: The 2010 Deepwater Horizon Oil Spill and Its Environmental Developmental Impacts 2018 , 235-283		10
14	Sublethal neurotoxicity of organophosphate insecticides to juvenile coho salmon. <i>Aquatic Toxicology</i> , 2020 , 221, 105424	5.1	8
13	Crude oil cardiotoxicity to red drum embryos is independent of oil dispersion energy. <i>Chemosphere</i> , 2018 , 213, 205-214	8.4	8
12	Legacy habitat contamination as a limiting factor for Chinook salmon recovery in the Willamette Basin, Oregon, USA. <i>PLoS ONE</i> , 2019 , 14, e0214399	3.7	7
11	NO/cGMP Signaling and the Flexible Organization of Motor Behavior in Crustaceans. <i>American Zoologist</i> , 2001 , 41, 292-303		6
10	NO/cGMP Signaling and the Flexible Organization of Motor Behavior in Crustaceans1. <i>American Zoologist</i> , 2001 , 41, 292-303		5
9	Cardiac remodeling in response to embryonic crude oil exposure involves unconventional NKX family members and innate immunity genes. <i>Journal of Experimental Biology</i> , 2019 , 222,	3	5
8	Urban stormwater and crude oil injury pathways converge on the developing heart of a shore-spawning marine forage fish. <i>Aquatic Toxicology</i> , 2020 , 229, 105654	5.1	3
7	The electro-olfactogram 2005 ,		3
6	Ecotoxicological Risk of Mixtures 2015 , 441-462		2

Chemical pollution 149-177 5 2 The Extension of Molecular and Computational Information to Risk Assessment and Regulatory Decision Making* 2006, 151-180 Low-level embryonic crude oil exposure disrupts ventricular ballooning and subsequent 5.1 1 3 trabeculation in Pacific herring. Aquatic Toxicology, 2021, 235, 105810 Review of and Recommendations for Monitoring Contaminants and their Effects in the San 1.4

Decreased Growth Rate Associated with Tissue Contaminants in Juvenile Chinook Salmon 1 Out-Migrating through an Industrial Waterway. *Environmental Science & Environmental &*

Francisco BayDelta. San Francisco Estuary and Watershed Science, 2019, 17,