
Svenja Nölting

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5776694/publications.pdf Version: 2024-02-01

SVENIA NÃOLTINO

#	Article	IF	CITATIONS
1	Personalized Management of Pheochromocytoma and Paraganglioma. Endocrine Reviews, 2022, 43, 199-239.	20.1	127
2	Plasma Steroid Profiling in Patients With Adrenal Incidentaloma. Journal of Clinical Endocrinology and Metabolism, 2022, 107, e1181-e1192.	3.6	19
3	Personalized drug testing in human pheochromocytoma/paraganglioma primary cultures. Endocrine-Related Cancer, 2022, 29, 285-306.	3.1	12
4	Improved Diagnostic Accuracy of Clonidine Suppression Testing Using an Age-Related Cutoff for Plasma Normetanephrine. Hypertension, 2022, 79, 1257-1264.	2.7	8
5	Preanalytical Considerations and Outpatient Versus Inpatient Tests of Plasma Metanephrines to Diagnose Pheochromocytoma. Journal of Clinical Endocrinology and Metabolism, 2022, 107, e3689-e3698.	3.6	4
6	Metastatic pheochromocytoma and paraganglioma: signs and symptoms related to catecholamine secretion. Discover Oncology, 2021, 12, 9.	2.1	5
7	Plasma metanephrines and prospective prediction of tumor location, size and mutation type in patients with pheochromocytoma and paraganglioma. Clinical Chemistry and Laboratory Medicine, 2021, 59, 353-363.	2.3	32
8	Sino-European Differences in the Genetic Landscape and Clinical Presentation of Pheochromocytoma and Paraganglioma. Journal of Clinical Endocrinology and Metabolism, 2020, 105, 3295-3307.	3.6	34
9	Inhibition of Wnt/β-Catenin Signaling in Neuroendocrine Tumors In Vitro: Antitumoral Effects. Cancers, 2020, 12, 345.	3.7	26
10	HIF2α supports pro-metastatic behavior in pheochromocytomas/paragangliomas. Endocrine-Related Cancer, 2020, 27, 625-640.	3.1	33
11	Current Management of Pheochromocytoma/Paraganglioma: A Guide for the Practicing Clinician in the Era of Precision Medicine. Cancers, 2019, 11, 1505.	3.7	120
12	Synergistic Highly Potent Targeted Drug Combinations in Different Pheochromocytoma Models Including Human Tumor Cultures. Endocrinology, 2019, 160, 2600-2617.	2.8	24
13	Optimizing Genetic Workup in Pheochromocytoma and Paraganglioma by Integrating Diagnostic and Research Approaches. Cancers, 2019, 11, 809.	3.7	23
14	Combination of 5-Fluorouracil with Epigenetic Modifiers Induces Radiosensitization, Somatostatin Receptor 2 Expression, and Radioligand Binding in Neuroendocrine Tumor Cells In Vitro. Journal of Nuclear Medicine, 2019, 60, 1240-1246.	5.0	35
15	Metastatic Phaeochromocytoma: Spinning Towards More Promising Treatment Options. Experimental and Clinical Endocrinology and Diabetes, 2019, 127, 117-128.	1.2	40
16	Advanced neuroendocrine tumours of the small intestine and pancreas: clinical developments, controversies, and future strategies. Lancet Diabetes and Endocrinology,the, 2018, 6, 404-415.	11.4	56
17	Tropomyosin receptor kinase: a novel target in screened neuroendocrine tumors. Endocrine-Related Cancer, 2018, 25, 547-560.	3.1	9
18	The HDM2 (MDM2) Inhibitor NVP-CGM097 Inhibits Tumor Cell Proliferation and Shows Additive Effects with 5-Fluorouracil on the p53-p21-Rb-E2F1 Cascade in the p53 ^{wild type} Neuroendocrine Tumor Cell Line GOT1. Neuroendocrinology, 2018, 106, 1-19.	2.5	25

Svenja Nölting

#	Article	IF	CITATIONS
19	The Novel Cyclin-Dependent Kinase 4/6 Inhibitor Ribociclib (LEE011) Alone and in Dual-Targeting Approaches Demonstrates Antitumoral Efficacy in Neuroendocrine Tumors in vitro. Neuroendocrinology, 2018, 106, 58-73.	2.5	18
20	GSK3α/β: A Novel Therapeutic Target for Neuroendocrine Tumors. Neuroendocrinology, 2018, 106, 335-351.	2.5	10
21	The role of CSK3 and its reversal with GSK3 antagonism in everolimus resistance. Endocrine-Related Cancer, 2018, 25, 893-908.	3.1	24
22	Molecular targeted therapies in adrenal, pituitary and parathyroid malignancies. Endocrine-Related Cancer, 2017, 24, R239-R259.	3.1	16
23	The MTH1 inhibitor TH588 demonstrates anti-tumoral effects alone and in combination with everolimus, 5-FU and gamma-irradiation in neuroendocrine tumor cells. PLoS ONE, 2017, 12, e0178375.	2.5	10
24	The selective PI3Kα inhibitor BYL719 as a novel therapeutic option for neuroendocrine tumors: Results from multiple cell line models. PLoS ONE, 2017, 12, e0182852.	2.5	23
25	Cabozantinib and Tivantinib, but Not INC280, Induce Antiproliferative and Antimigratory Effects in Human Neuroendocrine Tumor Cells in vitro: Evidence for â€~Off-Target' Effects Not Mediated by c-Met Inhibition. Neuroendocrinology, 2016, 103, 383-401.	2.5	21
26	Additive Anti-Tumor Effects of Lovastatin and Everolimus In Vitro through Simultaneous Inhibition of Signaling Pathways. PLoS ONE, 2015, 10, e0143830.	2.5	16
27	Inhibitory Effect of the Noncamptothecin Topoisomerase I Inhibitor LMP-400 on Female Mice Models and Human Pheochromocytoma Cells. Endocrinology, 2015, 156, 4094-4104.	2.8	12
28	Anticancer effects of metformin on neuroendocrine tumor cells in vitro. Hormones, 2014, 13, 498-508.	1.9	23
29	Combination of 13-Cis Retinoic Acid and Lovastatin: Marked Antitumor Potential In Vivo in a Pheochromocytoma Allograft Model in Female Athymic Nude Mice. Endocrinology, 2014, 155, 2377-2390.	2.8	15
30	Anti-Cancer Potential of MAPK Pathway Inhibition in Paragangliomas–Effect of Different Statins on Mouse Pheochromocytoma Cells. PLoS ONE, 2014, 9, e97712.	2.5	24
31	Combined Inhibition of mTORC1 and mTORC2 Signaling Pathways Is a Promising Therapeutic Option in Inhibiting Pheochromocytoma Tumor Growth: In Vitro and In Vivo Studies in Female Athymic Nude Mice. Endocrinology, 2013, 154, 646-655.	2.8	41
32	Chromogranin A as Serum Marker for Gastroenteropancreatic Neuroendocrine Tumors: A Single Center Experience and Literature Review. Cancers, 2012, 4, 141-155.	3.7	30
33	Combined blockade of signalling pathways shows marked anti-tumour potential in phaeochromocytoma cell lines. Journal of Molecular Endocrinology, 2012, 49, 79-96.	2.5	44
34	Signaling Pathways in Pheochromocytomas and Paragangliomas: Prospects for Future Therapies. Endocrine Pathology, 2012, 23, 21-33.	9.0	57
35	The Role of the Octarepeat Region in Neuroprotective Function of the Cellular Prion Protein. Brain Pathology, 2007, 17, 174-183.	4.1	109
36	A Method to Perform Western Blots of Microscopic Areas of Histological Sections. Journal of Histochemistry and Cytochemistry, 2006, 54, 559-565.	2.5	22