Bongkwon Son

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5776483/publications.pdf Version: 2024-02-01

RONCKWON SON

#	Article	IF	CITATIONS
1	High-efficiency GeSn/Ge multiple-quantum-well photodetectors with photon-trapping microstructures operating at 2 µm. Optics Express, 2020, 28, 10280.	3.4	67
2	High Performance Flexible Visible-Blind Ultraviolet Photodetectors with Two-Dimensional Electron Gas Based on Unconventional Release Strategy. ACS Nano, 2021, 15, 8386-8396.	14.6	38
3	Dark current analysis of germanium-on-insulator vertical <i>p-i-n</i> photodetectors with varying threading dislocation density. Journal of Applied Physics, 2020, 127, .	2.5	35
4	Metal-Semiconductor-Metal GeSn Photodetectors on Silicon for Short-Wave Infrared Applications. Micromachines, 2020, 11, 795.	2.9	24
5	High speed and ultra-low dark current Ge vertical p-i-n photodetectors on an oxygen-annealed Ge-on-insulator platform with GeO _x surface passivation. Optics Express, 2020, 28, 23978.	3.4	23
6	Photo detection and modulation from 1,550 to 2,000â€nm realized by a GeSn/Ge multiple-quantum-well photodiode on a 300-mm Si substrate. Optics Express, 2020, 28, 34772.	3.4	23
7	Resonant-cavity-enhanced responsivity in germanium-on-insulator photodetectors. Optics Express, 2020, 28, 23739.	3.4	22
8	Direct Chemisorption-Assisted Nanotransfer Printing with Wafer-Scale Uniformity and Controllability. ACS Nano, 2022, 16, 378-385.	14.6	15
9	Low-power and high-detectivity Ge photodiodes by in-situ heavy As doping during Ge-on-Si seed layer growth. Optics Express, 2021, 29, 2940.	3.4	11
10	A highly ordered and damage-free Ge inverted pyramid array structure for broadband antireflection in the mid-infrared. Journal of Materials Chemistry C, 2021, 9, 9884-9891.	5.5	10
11	Surface plasmon enhanced GeSn photodetectors operating at 2 µm. Optics Express, 2021, 29, 8498.	3.4	10
12	Sub-mA/cm ² Dark Current Density, Buffer-Less Germanium (Ge) Photodiodes on a 200-mm Ge-on-Insulator Substrate. IEEE Transactions on Electron Devices, 2021, 68, 1730-1737.	3.0	10
13	Insights into the Origins of Guided Microtrenches and Microholes/rings from Sn Segregation in Germanium–Tin Epilayers. Journal of Physical Chemistry C, 2020, 124, 20035-20045.	3.1	9
14	Gourd-shaped hole array germanium (Ge)-on-insulator photodiodes with improved responsivity and specific detectivity at 1,550â€nm. Optics Express, 2021, 29, 16520.	3.4	7
15	Growth and Characterizations of GeSn Films with High Sn Composition by Chemical Vapor Deposition (CVD) Using Ge2H6 and SnCl4 for Mid-IR Applications. ECS Transactions, 2020, 98, 91-98.	0.5	6
16	Metal-Semiconductor-Metal Photodetectors on a GeSn-on-Insulator Platform for 2 µm Applications. IEEE Photonics Journal, 2022, 14, 1-6.	2.0	5
17	Effects of high-temperature thermal annealing on GeSn thin-film material and photodetector operating at 2†µm. Journal of Alloys and Compounds, 2021, 872, 159696.	5.5	4

18 Metal-semiconductor-metal photodetectors on a GeSn-on-insulator platform. , 2019, , .

3

BONGKWON SON

#	ARTICLE	IF	CITATIONS
19	Grating and hole-array enhanced germanium lateral p-i-n photodetectors on an insulator platform. Optics Express, 2022, 30, 4706.	3.4	3
20	A heavily doped germanium pyramid array for tunable optical antireflection in the broadband mid-infrared range. Journal of Materials Chemistry C, 2022, 10, 5797-5804.	5.5	3
21	Systematic study on photoexcited carrier dynamics related to defects in GeSn films with low Sn content at room temperature. Semiconductor Science and Technology, 2021, 36, 125018.	2.0	2
22	Dark Current Analysis of Vertical p-i-n Photodetectors on a Germanium-on-Insulator Platform. , 2019, ,		1
23	Direct bandgap GeSn nanowires enabled with ultrahigh tension from harnessing intrinsic compressive strain. Applied Physics Letters, 2022, 120, .	3.3	1