
Dante Minniti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5776442/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sloan Digital Sky Survey IV: Mapping the Milky Way, Nearby Galaxies, and the Distant Universe. Astronomical Journal, 2017, 154, 28.	4.7	1,100
2	The 16th Data Release of the Sloan Digital Sky Surveys: First Release from the APOGEE-2 Southern Survey and Full Release of eBOSS Spectra. Astrophysical Journal, Supplement Series, 2020, 249, 3.	7.7	826
3	The Fourteenth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the Extended Baryon Oscillation Spectroscopic Survey and from the Second Phase of the Apache Point Observatory Galactic Evolution Experiment. Astrophysical Journal, Supplement Series, 2018, 235, 42.	7.7	796
4	The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. Astrophysical Journal, 2000, 542, 281-307.	4.5	752
5	VISTA Variables in the Via Lactea (VVV): The public ESO near-IR variability survey of the Milky Way. New Astronomy, 2010, 15, 433-443.	1.8	698
6	An eclipsing-binary distance to the Large Magellanic Cloud accurate to two per cent. Nature, 2013, 495, 76-79.	27.8	523
7	The Seventeenth Data Release of the Sloan Digital Sky Surveys: Complete Release of MaNGA, MaStar, and APOGEE-2 Data. Astrophysical Journal, Supplement Series, 2022, 259, 35.	7.7	405
8	The N2K Consortium. II. A Transiting Hot Saturn around HD 149026 with a Large Dense Core. Astrophysical Journal, 2005, 633, 465-473.	4.5	332
9	VVV DR1: The first data release of the Milky Way bulge and southern plane from the near-infrared ESO public survey VISTA variables in the VÃa Láctea. Astronomy and Astrophysics, 2012, 537, A107.	5.1	312
10	The Fifteenth Data Release of the Sloan Digital Sky Surveys: First Release of MaNGA-derived Quantities, Data Visualization Tools, and Stellar Library. Astrophysical Journal, Supplement Series, 2019, 240, 23.	7.7	299
11	MACHO Project Limits on Black Hole Dark Matter in the 1–30 [ITAL]M[/ITAL][TINF]⊙[/TINF] Range. Astrophysical Journal, 2001, 550, L169-L172.	4.5	271
12	Reddening and metallicity maps of the Milky Way bulge from VVV and 2MASS. Astronomy and Astrophysics, 2012, 543, A13.	5.1	251
13	The metal content of bulge field stars from FLAMES-GIRAFFE spectra. Astronomy and Astrophysics, 2008, 486, 177-189.	5.1	245
14	Are the hosts of gamma-ray bursts sub-luminous and blue galaxies?. Astronomy and Astrophysics, 2003, 400, 499-510.	5.1	221
15	Photometry and Spectroscopy of GRB 030329 and Its Associated Supernova 2003dh: The First Two Months. Astrophysical Journal, 2003, 599, 394-407.	4.5	193
16	The metallicity distribution of bulge clump giants in Baade's window. Astronomy and Astrophysics, 2011, 534, A80.	5.1	169
17	Oxygen, sodium, magnesium, and aluminium as tracers of the galactic bulge formation. Astronomy and Astrophysics, 2007, 465, 799-814.	5.1	160
18	Testing LMC Microlensing Scenarios: The Discrimination Power of the SuperMACHO Microlensing Survey, Astrophysical Journal, 2005, 634, 1103-1115.	4.5	160

#	Article	IF	CITATIONS
19	Stellar Proper Motions in the Galactic Bulge from Deep <i>Hubble Space Telescope</i> ACS WFC Photometry. Astrophysical Journal, 2008, 684, 1110-1142.	4.5	159
20	Insights on the Milky Way bulge formation from the correlations between kinematics and metallicity. Astronomy and Astrophysics, 2010, 519, A77.	5.1	155
21	The MACHO Project: Microlensing Optical Depth toward the Galactic Bulge from Difference Image Analysis. Astrophysical Journal, 2000, 541, 734-766.	4.5	153
22	Hubble Space Telescope Proper Motions and Stellar Dynamics in the Core of the Globular Cluster 47 Tucanae. Astrophysical Journal, Supplement Series, 2006, 166, 249-297.	7.7	150
23	MOA-2011-BLG-262Lb: A SUB-EARTH-MASS MOON ORBITING A GAS GIANT PRIMARY OR A HIGH VELOCITY PLANETARY SYSTEM IN THE GALACTIC BULGE. Astrophysical Journal, 2014, 785, 155.	4.5	146
24	EROS and MACHO Combined Limits on Planetary-Mass Dark Matter in the Galactic Halo. Astrophysical Journal, 1998, 499, L9-L12.	4.5	143
25	Alpha element abundances and gradients in the Milky Way bulge from FLAMES-GIRAFFE spectra of 650 K giants. Astronomy and Astrophysics, 2011, 530, A54.	5.1	139
26	A PLANETARY SYSTEM AROUND THE NEARBY M DWARF GJ 667C WITH AT LEAST ONE SUPER-EARTH IN ITS HABITABLE ZONE. Astrophysical Journal Letters, 2012, 751, L16.	8.3	139
27	Oxygen abundances in the Galactic bulge: evidence for fast chemical enrichment. Astronomy and Astrophysics, 2006, 457, L1-L4.	5.1	131
28	MACHO Alert 95â€30: First Realâ€Time Observation of Extended Source Effects in Gravitational Microlensing. Astrophysical Journal, 1997, 491, 436-450.	4.5	131
29	VVV SURVEY NEAR-INFRARED PHOTOMETRY OF KNOWN BULGE RR LYRAE STARS: THE DISTANCE TO THE GALACTIC CENTER AND ABSENCE OF A BARRED DISTRIBUTION OF THE METAL-POOR POPULATION. Astrophysical Journal Letters, 2013, 776, L19.	8.3	129
30	Light echoes from ancient supernovae in the Large Magellanic Cloud. Nature, 2005, 438, 1132-1134.	27.8	128
31	Calibration of the MACHO Photometry Database. Publications of the Astronomical Society of the Pacific, 1999, 111, 1539-1558.	3.1	126
32	Transiting extrasolar planetary candidates in the Galactic bulge. Nature, 2006, 443, 534-540.	27.8	126
33	Metal-rich globular clusters with R less than or equal 3 kpc: Disk or bulge clusters. Astronomical Journal, 1995, 109, 1663.	4.7	126
34	MAPPING THE X-SHAPED MILKY WAY BULGE. Astronomical Journal, 2011, 142, 76.	4.7	125
35	Disentangling the Galactic Halo with APOGEE. I. Chemical and Kinematical Investigation of Distinct Metal-poor Populations. Astrophysical Journal, 2018, 852, 49.	4.5	123
36	Kinematics, ages and metallicities of star clusters in NGC 1316: a 3-Gyr-old merger remnant. Monthly Notices of the Royal Astronomical Society, 2001, 322, 643-657.	4.4	116

#	Article	IF	CITATIONS
37	The N2K Consortium. I. A Hot Saturn Planet Orbiting HD 88133. Astrophysical Journal, 2005, 620, 481-486.	4.5	116
38	Unveiling the nature of INTEGRAL objects through optical spectroscopy. Astronomy and Astrophysics, 2006, 459, 21-30.	5.1	116
39	Scattered-Light Echoes from the Historical Galactic Supernovae Cassiopeia A and Tycho (SN 1572). Astrophysical Journal, 2008, 681, L81-L84.	4.5	116
40	From the bulge to the outer disc: StarHorse stellar parameters, distances, and extinctions for stars in APOGEE DR16 and other spectroscopic surveys. Astronomy and Astrophysics, 2020, 638, A76.	5.1	116
41	Microlensing Optical Depth toward the Galactic Bulge Using Clump Giants from the MACHO Survey. Astrophysical Journal, 2005, 631, 879-905.	4.5	114
42	THE FIRST DETECTION OF BLUE STRAGGLER STARS IN THE MILKY WAY BULGE. Astrophysical Journal, 2011, 735, 37.	4.5	114
43	The Araucaria Project: Nearâ€Infrared Photometry of Cepheid Variables in the Sculptor Galaxy NGC 300. Astrophysical Journal, 2005, 628, 695-703.	4.5	112
44	Direct detection of a microlens in the Milky Way. Nature, 2001, 414, 617-619.	27.8	110
45	The GIRAFFE Inner Bulge Survey (GIBS). Astronomy and Astrophysics, 2017, 599, A12.	5.1	109
46	Gravitational Microlensing Events Due to Stellarâ€Mass Black Holes. Astrophysical Journal, 2002, 579, 639-659.	4.5	108
47	The GIRAFFE Inner Bulge Survey (GIBS). Astronomy and Astrophysics, 2014, 562, A66.	5.1	108
48	Reddening and metallicity maps of the Milky Way bulge from VVV and 2MASS. Astronomy and Astrophysics, 2011, 534, A3.	5.1	105
49	Separation of stellar populations by an evolving bar: implications for the bulge of the Milky Way. Monthly Notices of the Royal Astronomical Society, 2017, 469, 1587-1611.	4.4	104
50	VIRAC: the VVV Infrared Astrometric Catalogue. Monthly Notices of the Royal Astronomical Society, 2018, 474, 1826-1849.	4.4	103
51	Homogeneous analysis of globular clusters from the APOGEE survey with the BACCHUS code – II. The Southern clusters and overview. Monthly Notices of the Royal Astronomical Society, 2020, 492, 1641-1670.	4.4	103
52	The Transiting Extrasolar Giant Planet around the Star OGLE-TR-113. Astrophysical Journal, 2004, 609, L37-L40.	4.5	102
53	Evidence for the Hierarchical Formation of the Galactic Spheroid. Astrophysical Journal, 2000, 533, 869-883.	4.5	102
54	The <i>Gaia</i> -ESO Survey: metallicity and kinematic trends in the Milky Way bulge. Astronomy and Astrophysics, 2014, 569, A103.	5.1	101

#	Article	IF	CITATIONS
55	Combined Analysis of the Binary Lens Causticâ€crossing Event MACHO 98â€6MCâ€1. Astrophysical Journal, 2000, 532, 340-352.	4.5	99
56	Spectral Identification of an Ancient Supernova Using Light Echoes in the Large Magellanic Cloud. Astrophysical Journal, 2008, 680, 1137-1148.	4.5	99
57	The dynamical mass of a classical Cepheid variable star in an eclipsing binary system. Nature, 2010, 468, 542-544.	27.8	98
58	Interstellar extinction curve variations towards the inner Milky Way: a challenge to observational cosmology. Monthly Notices of the Royal Astronomical Society, 2016, 456, 2692-2706.	4.4	98
59	The <i>Gaia</i> -ESO Survey: Exploring the complex nature and origins of the Galactic bulge populations. Astronomy and Astrophysics, 2017, 601, A140.	5.1	93
60	The MACHO Project Large Magellanic Cloud Variableâ€Star Inventory. IX. Frequency Analysis of the Firstâ€Overtone RR Lyrae Stars and the Indication for Nonradial Pulsations. Astrophysical Journal, 2000, 542, 257-280.	4.5	93
61	The MACHO Project Large Magellanic Cloud Variable Star Inventory. XI. Frequency Analysis of the Fundamentalâ€Mode RR Lyrae Stars. Astrophysical Journal, 2003, 598, 597-609.	4.5	92
62	Proper Motions of Dwarf Spheroidal Galaxies fromHubble Space TelescopeImaging. V. Final Measurement for Fornax. Astronomical Journal, 2007, 133, 818-844.	4.7	92
63	Binary Microlensing Events from the MACHO Project. Astrophysical Journal, 2000, 541, 270-297.	4.5	91
64	Unveiling the nature of <i>INTEGRAL</i> objects through optical spectroscopy. Astronomy and Astrophysics, 2008, 482, 113-132.	5.1	91
65	New Galactic star clusters discovered in the VVV survey. Astronomy and Astrophysics, 2011, 532, A131.	5.1	90
66	DIRECT CONFIRMATION OF THE ASYMMETRY OF THE CAS A SUPERNOVA WITH LIGHT ECHOES. Astrophysical Journal, 2011, 732, 3.	4.5	90
67	UNCLOAKING GLOBULAR CLUSTERS IN THE INNER GALAXY. Astronomical Journal, 2012, 143, 70.	4.7	90
68	The Globular Cluster System of NGC 1399. II. Kinematics of a Large Sample of Globular Clusters. Astronomical Journal, 2004, 127, 2094-2113.	4.7	88
69	The Open Cluster Chemical Abundances and Mapping Survey. IV. Abundances for 128 Open Clusters Using SDSS/APOGEE DR16. Astronomical Journal, 2020, 159, 199.	4.7	86
70	Proper Motions of Dwarf Spheroidal Galaxies fromHubble Space TelescopeImaging. II. Measurement for Carina. Astronomical Journal, 2003, 126, 2346-2361.	4.7	85
71	The MACHO Project 9 Million Star Color-Magnitude Diagram of the Large Magellanic Cloud. Astronomical Journal, 2000, 119, 2194-2213.	4.7	83
72	Proper Motions of Dwarf Spheroidal Galaxies fromHubble Space TelescopeImaging. IV. Measurement for Sculptor. Astronomical Journal, 2006, 131, 1445-1460.	4.7	83

#	Article	IF	CITATIONS
73	Mapping the Milky Way bulge at high resolution: the 3D dust extinction, CO, and X factor maps. Astronomy and Astrophysics, 2014, 566, A120.	5.1	83
74	Variability-selected Quasars in MACHO Project Magellanic Cloud Fields. Astronomical Journal, 2003, 125, 1-12.	4.7	82
75	FIRST RESULTS FROM THE NOAO SURVEY OF THE OUTER LIMITS OF THE MAGELLANIC CLOUDS. Astronomical Journal, 2010, 140, 1719-1738.	4.7	82
76	Reddening and metallicity maps of the Milky Way bulge from VVV and 2MASS. Astronomy and Astrophysics, 2013, 552, A110.	5.1	80
77	The MACHO Project LMC Variable Star Inventory. VII. The Discovery of RV Tauri Stars and New Type II Cepheids in the Large Magellanic Cloud. Astronomical Journal, 1998, 115, 1921-1933.	4.7	79
78	[ITAL]K[/ITAL]-Band Red Clump Distance to the Large Magellanic Cloud. Astrophysical Journal, 2002, 573, L51-L54.	4.5	78
79	The star cluster system of the 3-Gyr-old merger remnant NGC 1316: clues from optical and near-infrared photometry. Monthly Notices of the Royal Astronomical Society, 2001, 328, 237-256.	4.4	77
80	THE WFC3 GALACTIC BULGE TREASURY PROGRAM: METALLICITY ESTIMATES FOR THE STELLAR POPULATION AND EXOPLANET HOSTS. Astrophysical Journal Letters, 2010, 725, L19-L23.	8.3	77
81	Chemical abundances of 11 bulge stars from high-resolution, near-IR spectra. Astronomy and Astrophysics, 2010, 509, A20.	5.1	77
82	Bright globular clusters in NGCÂ5128: the missing link between young massive clusters and evolved massive objects. Astronomy and Astrophysics, 2007, 469, 147-162.	5.1	77
83	Stellar density profile and mass of the Milky Way bulge from VVV data. Astronomy and Astrophysics, 2016, 587, L6.	5.1	75
84	Dwarf Galaxies Also Have Stellar Halos. Astrophysical Journal, 1996, 467, L13-L16.	4.5	73
85	Proper Motions of Dwarf Spheroidal Galaxies fromHubble Space TelescopeImaging. III. Measurement for Ursa Minor. Astronomical Journal, 2005, 130, 95-115.	4.7	73
86	THE ARAUCARIA PROJECT. DETERMINATION OF THE LARGE MAGELLANIC CLOUD DISTANCE FROM LATE-TYPE ECLIPSING BINARY SYSTEMS. I. OGLE-051019.64-685812.3. Astrophysical Journal, 2009, 697, 862-866.	4.5	73
87	GJ 832c: A SUPER-EARTH IN THE HABITABLE ZONE. Astrophysical Journal, 2014, 791, 114.	4.5	72
88	The metallicity gradient of the Galactic bulge *. Monthly Notices of the Royal Astronomical Society, 1995, 277, 1293-1311.	4.4	71
89	PUSHING THE BOUNDARIES OF CONVENTIONAL CORE-COLLAPSE SUPERNOVAE: THE EXTREMELY ENERGETIC SUPERNOVA SN 2003ma. Astrophysical Journal, 2011, 729, 88.	4.5	70
90	Field Stars and Clusters of the Galactic Bulge: Implications for Galaxy Formation. Astrophysical Journal, 1996, 459, 175.	4.5	70

6

#	Article	IF	CITATIONS
91	Stellar Populations of the Dwarf Irregular Galaxy WLM. Astronomical Journal, 1997, 114, 147.	4.7	69
92	The MACHO Project LMC Variable Star Inventory.V.Classification and Orbits of 611 Eclipsing Binary Stars. Astronomical Journal, 1997, 114, 326.	4.7	69
93	The MACHO Project LMC Variable Star Inventory. X. The R Coronae Borealis Stars. Astrophysical Journal, 2001, 554, 298-315.	4.5	69
94	Light echoes reveal an unexpectedly cool η Carinae during its nineteenth-century Great Eruption. Nature, 2012, 482, 375-378.	27.8	68
95	APOGEE Chemical Abundances of the Sagittarius Dwarf Galaxy. Astrophysical Journal, 2017, 845, 162.	4.5	68
96	A population of eruptive variable protostars in VVV. Monthly Notices of the Royal Astronomical Society, 2017, 465, 3011-3038.	4.4	68
97	Atypical Mg-poor Milky Way Field Stars with Globular Cluster Second-generation-like Chemical Patterns. Astrophysical Journal Letters, 2017, 846, L2.	8.3	66
98	The metal content of the bulge globular cluster NGCÂ6528. Astronomy and Astrophysics, 2004, 423, 507-516.	5.1	65
99	New VVV Survey Globular Cluster Candidates in the Milky Way Bulge*. Astrophysical Journal Letters, 2017, 849, L24.	8.3	65
100	New planetary systems from the Calan–Hertfordshire Extrasolar Planet Search. Monthly Notices of the Royal Astronomical Society, 2017, 466, 443-473.	4.4	65
101	Galactic DoppelgÃ ¤ gers: The Chemical Similarity Among Field Stars and Among Stars with a Common Birth Origin. Astrophysical Journal, 2018, 853, 198.	4.5	65
102	Proper Motions of Dwarf Spheroidal Galaxies from [ITAL]Hubble Space Telescope[/ITAL] Imaging. I. Method and a Preliminary Measurement for Fornax. Astronomical Journal, 2002, 124, 3198-3221.	4.7	64
103	The Araucaria Project: An Accurate Distance to the Local Group Galaxy NGC 6822 from Nearâ€Infrared Photometry of Cepheid Variables. Astrophysical Journal, 2006, 647, 1056-1064.	4.5	64
104	MAPPING THE RELEASE OF VOLATILES IN THE INNER COMAE OF COMETS C/2012 F6 (LEMMON) AND C/2012 S1 (ISON) USING THE ATACAMA LARGE MILLIMETER/SUBMILLIMETER ARRAY. Astrophysical Journal Letters, 2014, 792, L2.	8.3	64
105	APOGEE Chemical Abundance Patterns of the Massive Milky Way Satellites. Astrophysical Journal, 2021, 923, 172.	4.5	64
106	VLT-FLAMES analysis of 8 giants in the bulge metal-poor globular cluster NGCÂ6522: oldest cluster in the Galaxy?. Astronomy and Astrophysics, 2009, 507, 405-415.	5.1	63
107	Kinematic Evidence for an Old Stellar Halo in the Large Magellanic Cloud. Science, 2003, 301, 1508-1510.	12.6	62
108	Unveiling the nature of <i>INTEGRAL</i> objects through optical spectroscopy. Astronomy and Astrophysics, 2009, 495, 121-135.	5.1	61

#	Article	IF	CITATIONS
109	Precision radial velocities of 15 M5–M9 dwarfs. Monthly Notices of the Royal Astronomical Society, 2014, 439, 3094-3113.	4.4	61
110	A Sequoia in the Garden: FSR 1758—Dwarf Galaxy or Giant Globular Cluster? ^{â^—} . Astrophysical Journal Letters, 2019, 870, L24.	8.3	61
111	Unveiling the nature of <i>INTEGRAL</i> objects through optical spectroscopy. Astronomy and Astrophysics, 2010, 519, A96.	5.1	61
112	An improved metal abundance calibration for the Washington system. Astronomical Journal, 1991, 102, 1836.	4.7	61
113	Discovery of VVVÂCL001. Astronomy and Astrophysics, 2011, 527, A81.	5.1	60
114	Extinction Ratios in the Inner Galaxy as Revealed by the VVV Survey. Astrophysical Journal Letters, 2017, 849, L13.	8.3	60
115	The MACHO Project Large Magellanic Cloud Variable Star Inventory. III. Multimode RR Lyrae Stars, Distance to the Large Magellanic Cloud, and Age of the Oldest Stars. Astrophysical Journal, 1997, 482, 89-97.	4.5	60
116	The inner Galactic bar traced by the VVV survey. Astronomy and Astrophysics, 2011, 534, L14.	5.1	59
117	Infrared spectroscopy of eruptive variable protostars from VVV. Monthly Notices of the Royal Astronomical Society, 2017, 465, 3039-3100.	4.4	59
118	First Detection of a Gravitational Microlensing Candidate toward the Small Magellanic Cloud. Astrophysical Journal, 1997, 491, L11-L13.	4.5	58
119	The MACHO Project: Microlensing Detection Efficiency. Astrophysical Journal, Supplement Series, 2001, 136, 439-462.	7.7	57
120	Three Galactic globular cluster candidates. Astronomy and Astrophysics, 2011, 535, A33.	5.1	57
121	VARIABLE STARS IN THE VVV GLOBULAR CLUSTERS. I. 2MASS-GC 02 AND TERZAN 10. Astronomical Journal, 2015, 149, 99.	4.7	57
122	The VLT LBG Redshift Survey – III. The clustering and dynamics of Lyman-break galaxies at z â^¼ 3â~ Monthly Notices of the Royal Astronomical Society, 2013, 430, 425-449.	4.4	56
123	The RR Lyrae Population of the Galactic Bulge from the MACHO Database: Mean Colors and Magnitudes. Astrophysical Journal, 1998, 492, 190-199.	4.5	55
124	Milky Way demographics with the VVV survey. Astronomy and Astrophysics, 2018, 619, A4.	5.1	55
125	The Gaia-ESO Survey: the most metal-poor stars in the Galactic bulge. Monthly Notices of the Royal Astronomical Society, 2014, 445, 4241-4246.	4.4	54
126	Hubble Space Telescope observations of globular cluster systems along the Hubble sequence of spiral galaxies. Monthly Notices of the Royal Astronomical Society, 2003, 343, 665-678.	4.4	53

#	Article	IF	CITATIONS
127	Radial Velocities of Globular Clusters in the Giant Elliptical Galaxy NGC 1399. Astronomical Journal, 1998, 115, 121-129.	4.7	53
128	The N2K Consortium. III. Shortâ€Period Planets Orbiting HD 149143 and HD 109749. Astrophysical Journal, 2006, 637, 1094-1101.	4.5	52
129	The VLT LBG Redshift Surveya˜ II. Interactions between galaxies and the IGM at zâ^¼ 3. Monthly Notices of the Royal Astronomical Society, 2011, 414, 28-49.	4.4	52
130	MOONS: the Multi-Object Optical and Near-infrared Spectrograph for the VLT. Proceedings of SPIE, 2014, , .	0.8	52
131	Chemical Abundances of Main-sequence, Turnoff, Subgiant, and Red Giant Stars from APOGEE Spectra. I. Signatures of Diffusion in the Open Cluster M67. Astrophysical Journal, 2018, 857, 14.	4.5	52
132	Detection of Lithium in a Main-Sequence Bulge Star Using Keck I as a 15 Meter Diameter Telescope. Astrophysical Journal, 1998, 499, L175-L178.	4.5	52
133	THE EDGE OF THE MILKY WAY STELLAR DISK REVEALED USING CLUMP GIANT STARS AS DISTANCE INDICATORS. Astrophysical Journal Letters, 2011, 733, L43.	8.3	51
134	Stellar ages through the corners of the boxy bulge. Astronomy and Astrophysics, 2013, 559, A98.	5.1	51
135	APOGEE DR14/DR15 Abundances in the Inner Milky Way. Astrophysical Journal, 2019, 870, 138.	4.5	51
136	Toward an Understanding of the Globular Cluster Overabundance around the Central Giant Elliptical Galaxy NGC 1399. Astronomical Journal, 1999, 117, 1206-1218.	4.7	51
137	New Metallicities of RR Lyrae Stars in ω Centauri: Evidence for a Non-He-enhanced Metal-intermediate Population. Astrophysical Journal, 2006, 640, L43-L46.	4.5	50
138	Detection of Period Variations in Extrasolar Transiting Planet OGLE-TR-111b. Astrophysical Journal, 2008, 682, L49-L52.	4.5	50
139	The GIRAFFE Inner Bulge Survey (GIBS). Astronomy and Astrophysics, 2015, 584, A46.	5.1	50
140	Massâ€losing Semiregular Variable Stars in Baade's Windows. Astrophysical Journal, 2001, 552, 289-308.	4.5	50
141	The Milky Way bar and bulge revealed by APOGEE and <i>Gaia</i> EDR3. Astronomy and Astrophysics, 2021, 656, A156.	5.1	50
142	Milky Way demographics with the VVV survey. Astronomy and Astrophysics, 2012, 544, A147.	5.1	49
143	Light Curves of Type Ia Supernovae from Near the Time of Explosion. Astronomical Journal, 2007, 133, 403-419.	4.7	48
144	Red Optical Planet Survey: a new search for habitable earths in the southern sky. Monthly Notices of the Royal Astronomical Society, 2012, 424, 591-604.	4.4	48

#	Article	IF	CITATIONS
145	A DETAILED ANALYSIS OF THE HD 73526 2:1 RESONANT PLANETARY SYSTEM. Astrophysical Journal, 2014, 780, 140.	4.5	48
146	Mapping the outer bulge with RRab stars from the VVV Survey. Astronomy and Astrophysics, 2016, 591, A145.	5.1	48
147	New galactic star clusters discovered in the VVV survey. Candidates projected on the inner disk and bulge. Astronomy and Astrophysics, 2014, 569, A24.	5.1	48
148	High-resolution abundance analysis of red giants in the globular cluster NGC 6522. Astronomy and Astrophysics, 2014, 570, A76.	5.1	48
149	Radioâ€Optical Alignment and Recent Star Formation Associated with Ionized Filaments in the Halo of NGC 5128 (Centaurus A). Astrophysical Journal, 2002, 564, 688-695.	4.5	48
150	3D kinematics through the X-shaped Milky Way bulge. Astronomy and Astrophysics, 2013, 555, A91.	5.1	46
151	Final Targeting Strategy for the SDSS-IV APOGEE-2S Survey. Astronomical Journal, 2021, 162, 303.	4.7	46
152	Difference Image Analysis of Galactic Microlensing. I. Data Analysis. Astrophysical Journal, 1999, 521, 602-612.	4.5	45
153	Properties of RRÂLyrae stars in the inner regions of the Large Magellanic Cloud. Astronomy and Astrophysics, 2004, 423, 97-109.	5.1	45
154	LOW-MASS COMPANIONS FOR FIVE SOLAR-TYPE STARS FROM THE MAGELLAN PLANET SEARCH PROGRAM. Astrophysical Journal, 2009, 693, 1424-1430.	4.5	45
155	Unveiling the nature of INTEGRAL objects through optical spectroscopy. Astronomy and Astrophysics, 2013, 556, A120.	5.1	45
156	The Relationship between Globular Cluster Mass, Metallicity, and Light-element Abundance Variations. Astronomical Journal, 2019, 158, 14.	4.7	45
157	VLT-UVES analysis of 5 giants in 47 Tucanae. Astronomy and Astrophysics, 2005, 435, 657-667.	5.1	45
158	The planetary nebula population of the Sagittarius dwarf spheroidal galaxy. Monthly Notices of the Royal Astronomical Society, 2006, 369, 875-890.	4.4	44
159	Three-dimensional interstellar extinction map toward the Galactic bulge. Astronomy and Astrophysics, 2013, 550, A42.	5.1	44
160	How many components? Quantifying the complexity of the metallicity distribution in the Milky Way bulge with APOGEE. Monthly Notices of the Royal Astronomical Society, 2020, 499, 1037-1057.	4.4	44
161	Stellar populations in NGC 5128 with the VLT: Evidence for recent star formation. Astronomy and Astrophysics, 2001, 379, 781-797.	5.1	43
162	The WFC3 Galactic Bulge Treasury Program: Relative Ages of Bulge Stars of High and Low Metallicity ^{â^—} . Astrophysical Journal, 2018, 863, 16.	4.5	43

#	Article	IF	CITATIONS
163	Lower metallicity of the Galactic globular cluster system: Calcium triplet spectroscopy of metal-poor globular cluster giants. Astronomical Journal, 1995, 109, 605.	4.7	43
164	Angular diameters, fluxes and extinction of compact planetary nebulae: further evidence for steeper extinction towards the bulge. Monthly Notices of the Royal Astronomical Society, 2004, 353, 796-812.	4.4	42
165	VLT-UVES analysis of two giants in the bulge metal-poor globular cluster HP-1. Astronomy and Astrophysics, 2006, 449, 349-358.	5.1	42
166	NGC 6558: A Blue Horizontal Branch Moderately Metal-Poor Globular Cluster in the Bulge. Astronomical Journal, 2007, 134, 1613-1625.	4.7	42
167	Low-Mass X-Ray Binaries and Globular Clusters in Centaurus A. Astrophysical Journal, 2007, 671, L117-L120.	4.5	42
168	FIVE LONG-PERIOD EXTRASOLAR PLANETS IN ECCENTRIC ORBITS FROM THE MAGELLAN PLANET SEARCH PROGRAM. Astrophysical Journal, 2010, 711, 1229-1235.	4.5	42
169	FIVE NEW TRANSIT EPOCHS OF THE EXOPLANET OGLE-TR-111b. Astrophysical Journal, 2011, 733, 53.	4.5	42
170	THE VVV SURVEY REVEALS CLASSICAL CEPHEIDS TRACING A YOUNG AND THIN STELLAR DISK ACROSS THE GALAXY'S BULGE. Astrophysical Journal Letters, 2015, 812, L29.	8.3	42
171	FSR 1716: A New Milky Way Globular Cluster Confirmed Using VVV RR Lyrae Stars. Astrophysical Journal Letters, 2017, 838, L14.	8.3	42
172	MACHO Project Photometry of RR Lyrae Stars in the Sagittarius Dwarf Galaxy. Astrophysical Journal, 1997, 474, 217-222.	4.5	42
173	Faint Blue Objects on the Hubble Deep Field North and South as Possible Nearby Old Halo White Dwarfs. Astrophysical Journal, 2000, 529, 911-916.	4.5	42
174	Deep [ITAL]HUBBLE SPACE TELESCOPE[/ITAL][ITAL]Hubble Space Telescope[/ITAL] STIS Color-Magnitude Diagrams of the Dwarf Irregular Galaxy WLM: Detection of the Horizontal Branch. Astronomical Journal, 2000, 120, 801-809.	4.7	41
175	Millimagnitude Photometry for Transiting Extrasolar Planetary Candidates. III. Accurate Radius and Period for OGLEâ€TRâ€111â€b. Astrophysical Journal, 2007, 660, 858-862.	4.5	40
176	Massive open star clusters using the VVV survey. Astronomy and Astrophysics, 2012, 545, A54.	5.1	40
177	Unveiling the nature of INTEGRAL objects through optical spectroscopy. Astronomy and Astrophysics, 2012, 538, A123.	5.1	40
178	CHARACTERIZATION OF THE NEARBY L/T BINARY BROWN DWARF WISE J104915.57–531906.1 AT 2 pc FROM SUN. Astrophysical Journal, 2013, 770, 124.	THE 4.5	40
179	MagAO IMAGING OF LONG-PERIOD OBJECTS (MILO). I. A BENCHMARK M DWARF COMPANION EXCITING A MASSIVE PLANET AROUND THE SUN-LIKE STAR HD 7449*. Astrophysical Journal, 2016, 818, 106.	4.5	40
180	Discovery and Characterization of a Caustic Crossing Microlensing Event in the Small Magellanic Cloud. Astrophysical Journal, 1999, 518, 44-49.	4.5	40

#	Article	IF	CITATIONS
181	Double-lined Spectroscopic Binaries in the APOGEE DR16 and DR17 Data. Astronomical Journal, 2021, 162, 184.	4.7	40
182	The Araucaria Project: An Improved Distance to the Sculptor Spiral Galaxy NGC 300 from Its Cepheid Variables. Astronomical Journal, 2004, 128, 1167-1176.	4.7	39
183	Li-rich red giant branch stars in the Galactic bulge. Astronomy and Astrophysics, 2009, 508, 289-295.	5.1	39
184	On the RR Lyrae Stars in Globulars. V. The Complete Near-infrared (JHK _s) Census of ω Centauri RR Lyrae Variables*. Astronomical Journal, 2018, 155, 137.	4.7	38
185	A Photometric and Spectroscopic Study of the Southern Open Clusters Pismis 18, Pismis 19, NGC 6005, and NGC 6253. Astronomical Journal, 1998, 116, 801-812.	4.7	38
186	Zinc abundances in Galactic bulge field red giants: Implications for damped Lyman- <i>α</i> systems. Astronomy and Astrophysics, 2015, 580, A40.	5.1	37
187	Is the Large Magellanic Cloud Microlensing Due to an Intervening Dwarf Galaxy?. Astrophysical Journal, 1997, 490, L59-L63.	4.5	37
188	The MACHO ProjectHubble Space TelescopeFollowâ€Up: Preliminary Results on the Location of the Large Magellanic Cloud Microlensing Source Stars. Astrophysical Journal, 2001, 552, 582-590.	4.5	37
189	The EXPLORE Project. I. A Deep Search for Transiting Extrasolar Planets. Astrophysical Journal, 2003, 582, 1123-1140.	4.5	36
190	The MACHO Project Large Magellanic Cloud Variable-Star Inventory. XIII. Fourier Parameters for the First-Overtone RR Lyrae Variables and the LMC Distance. Astronomical Journal, 2004, 127, 334-354.	4.7	36
191	A machine learned classifier for RR Lyrae in the VVV survey. Astronomy and Astrophysics, 2016, 595, A82.	5.1	36
192	Milky Way demographics with the VVV survey. Astronomy and Astrophysics, 2013, 552, A101.	5.1	36
193	Rotation of the Galactic bulge. Astrophysical Journal, 1992, 393, L47.	4.5	36
194	The VLT LBG Redshift Survey - I. Clustering and dynamics of â‰^1000 galaxies at zâ‰^ 3â~ Monthly Notices of the Royal Astronomical Society, 2011, 414, 2-27.	4.4	35
195	DISCOVERY OF RR LYRAE STARS IN THE NUCLEAR BULGE OF THE MILKY WAY. Astrophysical Journal Letters, 2016, 830, L14.	8.3	35
196	VLT-UVES abundance analysis of four giants in NGC 6553. Astronomy and Astrophysics, 2006, 460, 269-276.	5.1	35
197	The "666―collaboration on OGLE transits. Astronomy and Astrophysics, 2007, 465, 1069-1074.	5.1	35
198	A binary lensing event toward the LMC: Observations and dark matter implications. Nuclear Physics, Section B, Proceedings Supplements, 1996, 51, 152-156.	0.4	34

#	Article	IF	CITATIONS
199	Millimagnitude Photometry for Transiting Extrasolar Planetary Candidates. II. Transits of OGLEâ€TRâ€113â€b in the Optical and Nearâ€IR. Astrophysical Journal, 2007, 660, 850-857.	4.5	34
200	ZEN2: a narrow <i>J</i> -band search for <i>z</i> â ¹ /4 9 Lyα emitting galaxies directed towards three lensing clusters. Monthly Notices of the Royal Astronomical Society, 2008, 384, 1039-1044.	4.4	34
201	The Araucaria Project: The Distance to the Local Group Galaxy WLM from Nearâ€Infrared Photometry of Cepheid Variables. Astrophysical Journal, 2008, 683, 611-619.	4.5	34
202	BL Lacertae identifications in a ROSAT-selected sample of <i>Fermi</i> unidentified objects. Astronomy and Astrophysics, 2013, 559, A58.	5.1	34
203	Heavy elements Ba, La, Ce, Nd, and Eu in 56 Galactic bulge red giants. Astronomy and Astrophysics, 2016, 586, A1.	5.1	34
204	TraMoS – IV. Discarding the Quick Orbital Decay Hypothesis for OGLE-TR-113b. Monthly Notices of the Royal Astronomical Society, 2016, 455, 1334-1340.	4.4	33
205	Analysis of the physical nature of 22 New VVV Survey Globular Cluster candidates in the Milky Way bulge. Monthly Notices of the Royal Astronomical Society, 2019, 487, 3140-3149.	4.4	33
206	The bimodal [Mg/Fe] versus [Fe/H] bulge sequence as revealed by APOGEE DR14. Astronomy and Astrophysics, 2019, 626, A16.	5.1	33
207	THE ARAUCARIA PROJECT: THE DISTANCE TO THE SCULPTOR GALAXY NGC 247 FROM NEAR-INFRARED PHOTOMETRY OF CEPHEID VARIABLES. Astrophysical Journal, 2009, 700, 1141-1147.	4.5	32
208	TWO PLANETARY COMPANIONS AROUND THE K7 DWARF GJ 221: A HOT SUPER-EARTH AND A CANDIDATE IN THE SUB-SATURN DESERT RANGE. Astrophysical Journal, 2013, 771, 42.	4.5	32
209	High-dispersion spectroscopy of giants in metal-poor globular clusters. I - Iron abundances. Astrophysical Journal, 1993, 413, 548.	4.5	32
210	MACHO 96‣MCâ€2: Lensing of a Binary Source in the Large Magellanic Cloud and Constraints on the Lensing Object. Astrophysical Journal, 2001, 552, 259-267.	4.5	32
211	The Globular Cluster System of NGC 1399. III. VLT Spectroscopy and Database. Astronomical Journal, 2004, 127, 2114-2132.	4.7	31
212	Properties of RR Lyrae stars in the inner regions of the Large Magellanic Cloud. Astronomy and Astrophysics, 2009, 502, 505-514.	5.1	31
213	The VVV Templates Project Towards an automated classification of VVV light-curves. Astronomy and Astrophysics, 2014, 567, A100.	5.1	31
214	The MACHO Project Large Magellanic Cloud Variable Star Inventory. IV. New R Coronae Borealis Stars. Astrophysical Journal, 1996, 470, 583.	4.5	31
215	Resolving the Stellar Population of the Standard Elliptical Galaxy NGC 3379. Astronomical Journal, 2004, 127, 1441-1459.	4.7	30
216	The AGN Nature of 11 out of 12 <i>Swift</i> / <i>RXTE</i> Unidentified Sources through Optical and Xâ€Ray Spectroscopy. Astrophysical Journal, 2007, 669, 109-125.	4.5	30

#	Article	IF	CITATIONS
217	The Araucaria Project: Nearâ€Infrared Photometry of Cepheid Variables in the Sculptor Galaxy NGC 55. Astrophysical Journal, 2008, 672, 266-273.	4.5	30
218	Manganese abundances in Galactic bulge red giants. Astronomy and Astrophysics, 2013, 559, A5.	5.1	30
219	High-resolution abundance analysis of red giants in the metal-poor bulge globular cluster HP 1. Astronomy and Astrophysics, 2016, 591, A53.	5.1	30
220	Aluminium-enriched metal-poor stars buried in the inner Galaxy. Astronomy and Astrophysics, 2020, 643, L4.	5.1	30
221	IR Color-Magnitude Diagrams of 20 Galactic Globular Clusters and Bulge Fields. Astronomical Journal, 1995, 110, 1686.	4.7	30
222	Kinematics of Bulge Giants in F588. Astrophysical Journal, 1996, 459, 579.	4.5	30
223	High cadence near infrared timing observations of extrasolar planets. Astronomy and Astrophysics, 2009, 507, 481-486.	5.1	29
224	THE ARAUCARIA PROJECT: A STUDY OF THE CLASSICAL CEPHEID IN THE ECLIPSING BINARY SYSTEM OGLE LMC562.05.9009 IN THE LARGE MAGELLANIC CLOUD. Astrophysical Journal, 2015, 815, 28.	4.5	29
225	The structure behind the Galactic bar traced by red clump stars in the VVV survey. Monthly Notices of the Royal Astronomical Society: Letters, 2018, 481, L130-L135.	3.3	29
226	One more neighbor: The first brown dwarf in the VVV survey. Astronomy and Astrophysics, 2013, 557, L8.	5.1	29
227	Long Period Variables in NGCÂ5128. Astronomy and Astrophysics, 2003, 411, 351-360.	5.1	29
228	Discovery of new Milky Way star cluster candidates in the 2MASS point source catalog. Astronomy and Astrophysics, 2005, 435, 95-105.	5.1	28
229	A search for planets transiting the M-dwarf debris disc host, AU Microscopii. Monthly Notices of the Royal Astronomical Society, 2007, 379, 63-72.	4.4	28
230	OGLE-TR-211 – a new transiting inflated hot Jupiter from the OGLE survey and ESO LP666 spectroscopic follow-up program. Astronomy and Astrophysics, 2008, 482, 299-304.	5.1	28
231	A ground-based <i>K</i> _S -band detection of the thermal emission from the transiting exoplanet WASP-4b. Astronomy and Astrophysics, 2011, 530, A5.	5.1	28
232	Hundreds of new cluster candidates in the VISTA Variables in the VÃa Láctea survey DR1. Astronomy and Astrophysics, 2015, 581, A120.	5.1	28
233	THE ARAUCARIA PROJECT: THE FIRST-OVERTONE CLASSICAL CEPHEID IN THE ECLIPSING SYSTEM OGLE-LMC-CEP-2532. Astrophysical Journal, 2015, 806, 29.	4.5	28
234	Characterization of the VVV Survey RR Lyrae Population across the Southern Galactic Plane. Astronomical Journal, 2017, 153, 179.	4.7	28

#	Article	IF	CITATIONS
235	Extreme infrared variables from UKIDSS – II. An end-of-survey catalogue of eruptive YSOs and unusual stars. Monthly Notices of the Royal Astronomical Society, 2017, 472, 2990-3020.	4.4	28
236	Proper motions in the VVV Survey: Results for more than 15 million stars across NGC 6544. Astronomy and Astrophysics, 2017, 608, A140.	5.1	28
237	Galactic bulge population II Cepheids in the VVV survey: period-luminosity relations and a distance to the Galactic centre. Astronomy and Astrophysics, 2017, 605, A100.	5.1	28
238	The VVV Survey RR Lyrae Population in the Galactic Center Region*. Astrophysical Journal, 2018, 863, 79.	4.5	28
239	Discovery of a New Stellar Subpopulation Residing in the (Inner) Stellar Halo of the Milky Way. Astrophysical Journal Letters, 2019, 886, L8.	8.3	28
240	Globular cluster candidates in the Galactic bulge: <i>Gaia</i> and VVV view of the latest discoveries. Astronomy and Astrophysics, 2019, 628, A45.	5.1	28
241	Properties of RR Lyrae stars in the inner regions of the Large Magellanic Cloud. Astronomy and Astrophysics, 2006, 460, 459-466.	5.1	28
242	Chemical Abundances of Planetary Nebulae in the Sagittarius Dwarf Elliptical Galaxy. Astrophysical Journal, 1997, 487, 651-662.	4.5	28
243	The MACHO Project Large Magellanic Cloud Variable Star Inventory. XII. Three Cepheid Variables in Eclipsing Binaries. Astrophysical Journal, 2002, 573, 338-350.	4.5	27
244	The Most Exciting Massive Binary Cluster in NGC 5128: Clues to the Formation of Globular Clusters. Astrophysical Journal, 2004, 612, 215-221.	4.5	27
245	Discovery of Five New R Coronae Borealis Stars in the MACHO Galactic Bulge Database. Astronomical Journal, 2005, 130, 2293-2302.	4.7	27
246	A new near-IR window of low extinction in the Galactic plane. Astronomy and Astrophysics, 2018, 616, A26.	5.1	27
247	Mapping the stellar age of the Milky Way bulge with the VVV. Astronomy and Astrophysics, 2019, 623, A168.	5.1	27
248	Massive open star clusters using the VVV survey. Astronomy and Astrophysics, 2013, 549, A98.	5.1	27
249	Constraining dust extinction properties via the VVV survey. Astronomy and Astrophysics, 2016, 593, A124.	5.1	27
250	A transiting planet among 23 new near-threshold candidates fromÂtheÂOGLEÂsurvey – OGLE-TR-182. Astronomy and Astrophysics, 2008, 487, 749-754.	5.1	27
251	Globular Clusters in the Inner Regions of NGC 5128 (Centaurus A). Astrophysical Journal, 1996, 467, 221.	4.5	27
252	Extragalactic Globular Cluster Planetary Nebulae: Discovery of a Planetary Nebula in the NGC 5128 Globular Cluster G169 Using the Magellan I Baade Telescope. Astrophysical Journal, 2002, 575, L59-L62.	4.5	27

#	Article	IF	CITATIONS
253	Imaging and spectroscopy of ultrasteep spectrum radio sources. Monthly Notices of the Royal Astronomical Society, 2007, 378, 551-562.	4.4	26
254	THE ARAUCARIA PROJECT: AN ACCURATE DISTANCE TO THE LATE-TYPE DOUBLE-LINED ECLIPSING BINARY OGLE SMC113.3 4007 IN THE SMALL MAGELLANIC CLOUD. Astrophysical Journal, 2012, 750, 144.	4.5	26
255	Self-consistent modelling of the Milky Way's nuclear stellar disc. Monthly Notices of the Royal Astronomical Society, 2022, 512, 1857-1884.	4.4	26
256	The young Galactic star cluster [DBS2003] 179. Astronomy and Astrophysics, 2008, 488, 151-159.	5.1	25
257	Accurate classification of 75 counterparts of objects detected in the 54-month Palermo <i>Swift</i> /BAT hard X-ray catalogue. Astronomy and Astrophysics, 2014, 561, A67.	5.1	25
258	Updated census of RR Lyrae stars in the globular cluster <i>ï‰</i> Centauri (NGC 5139). Astronomy and Astrophysics, 2015, 577, A99.	5.1	25
259	DISCOVERY OF A PAIR OF CLASSICAL CEPHEIDS IN AN INVISIBLE CLUSTER BEYOND THE GALACTIC BULGE. Astrophysical Journal Letters, 2015, 799, L11.	8.3	25
260	VVV CL001: Likely the Most Metal-poor Surviving Globular Cluster in the Inner Galaxy. Astrophysical Journal Letters, 2021, 908, L42.	8.3	25
261	Washington photometry of open cluster giants - Nine old disk clusters in the third Galactic quadrant. Astronomical Journal, 1992, 104, 1892.	4.7	25
262	High-Dispersion Spectroscopy of Giants in Metal-poor Globular Clusters. II. Oxygen and Sodium Abundances. Astrophysical Journal, 1996, 470, 953.	4.5	25
263	Galactic Bulge Microlensing Events from the MACHO Collaboration. Astrophysical Journal, 2005, 631, 906-934.	4.5	24
264	NEW EVIDENCE SUPPORTING MEMBERSHIP FOR TW NOR IN LYNGÃ 6 AND THE CENTAURUS SPIRAL ARM. Astrophysical Journal Letters, 2011, 741, L27.	8.3	24
265	Reinforcing the link between the double red clump and the X-shaped bulge of the Milky Way. Astronomy and Astrophysics, 2015, 583, L5.	5.1	24
266	<i>H</i> -band discovery of additional second-generation stars in the Galactic bulge globular cluster NGC 6522 as observed by APOGEE and <i>Gaia</i> . Astronomy and Astrophysics, 2019, 627, A178.	5.1	24
267	Mapping the stellar age of the Milky Way bulge with the VVV. Astronomy and Astrophysics, 2020, 644, A140.	5.1	24
268	Accurate classification of 17 AGNs detected with Swift/BAT. Astronomy and Astrophysics, 2009, 507, 1345-1358.	5.1	23
269	Obscured clusters. Astronomy and Astrophysics, 2010, 516, A35.	5.1	23
270	Mapping the Milky Way in the Near-IR: The Future of the VVV Survey. Thirty Years of Astronomical Discovery With UKIRT, 2018, , 63-71.	0.3	23

#	Article	IF	CITATIONS
271	A 421-d activity cycle in the BeX recurrent transient A0538-66 from MACHO monitoring. Monthly Notices of the Royal Astronomical Society, 2001, 321, 678-684.	4.4	22
272	Optical Counterparts of Xâ€Ray Point Sources Observed byChandrain NGC 5128: 20 New Globular Cluster Xâ€Ray Sources. Astrophysical Journal, 2004, 600, 716-728.	4.5	22
273	THE WFC3 GALACTIC BULGE TREASURY PROGRAM: A FIRST LOOK AT RESOLVED STELLAR POPULATION TOOLS. Astronomical Journal, 2009, 137, 3172-3180.	4.7	22
274	High-precision astrometry with VVV – I. An independent reduction pipeline for VIRCAM@VISTAâ~ Monthly Notices of the Royal Astronomical Society, 2015, 450, 1664-1673.	4.4	22
275	VVV Survey Microlensing Events in the Galactic Center Region. Astrophysical Journal Letters, 2017, 851, L13.	8.3	22
276	Searching for faint comoving companions to the α Centauri system in the VVV survey infrared images. Monthly Notices of the Royal Astronomical Society, 2017, 472, 3952-3958.	4.4	22
277	Establishing the Galactic Centre distance using VVV Bulge RR Lyrae variables. Astrophysics and Space Science, 2018, 363, 1.	1.4	22
278	Mapping the stellar age of the Milky Way bulge with the VVV. Astronomy and Astrophysics, 2019, 629, A1.	5.1	22
279	Short- and long-term near-infrared spectroscopic variability of eruptive protostars from VVV. Monthly Notices of the Royal Astronomical Society, 2020, 492, 294-314.	4.4	22
280	APOGEE spectroscopic evidence for chemical anomalies in dwarf galaxies: The case of M 54 and Sagittarius. Astronomy and Astrophysics, 2021, 648, A70.	5.1	22
281	Accurate classification of 29 objects detected in the 39 month Palermo <i>Swift</i> /BAT hard X-ray catalogue. Astronomy and Astrophysics, 2012, 545, A101.	5.1	22
282	The enigmatic globular cluster UKS 1 obscured by the bulge: <i>H</i> -band discovery of nitrogen-enhanced stars. Astronomy and Astrophysics, 2020, 643, A145.	5.1	22
283	Difference Image Analysis of Galactic Microlensing. II. Microlensing Events. Astrophysical Journal, Supplement Series, 1999, 124, 171-179.	7.7	21
284	The MACHO Project Sample of Galactic Bulge Highâ€Amplitude δ Scuti Stars: Pulsation Behavior and Stellar Properties. Astrophysical Journal, 2000, 536, 798-815.	4.5	21
285	Long period variables in NGCÂ5128. Astronomy and Astrophysics, 2003, 406, 75-85.	5.1	21
286	A near-infrared catalogue of the Galactic novae in the VVV survey area. Astronomy and Astrophysics, 2013, 554, A123.	5.1	21
287	Bulge RR Lyrae stars in the VVV tile b201. Astronomy and Astrophysics, 2015, 575, A114.	5.1	21
288	The central spheroids of Milky Way mass-sized galaxies. Monthly Notices of the Royal Astronomical Society, 2018, 473, 1656-1666.	4.4	21

#	Article	IF	CITATIONS
289	Oxygen and zinc abundances in 417 Galactic bulge red giants. Astronomy and Astrophysics, 2018, 614, A149.	5.1	21
290	Jurassic: A chemically anomalous structure in the Galactic halo. Astronomy and Astrophysics, 2020, 644, A83.	5.1	21
291	DOUBLE HORIZONTAL BRANCHES IN NGC 6440 AND NGC 6569 UNVEILED BY THE VVV SURVEY. Astrophysical Journal Letters, 2012, 761, L29.	8.3	21
292	Absolute Parameters for Eight Eclipsing Binaries in the Large Magellanic Cloud: The Mass‣uminosity Relation. Astrophysical Journal, 2005, 624, 946-956.	4.5	20
293	Discovery of a brown dwarf companion to the A3V star \hat{I}^2 Circini. Monthly Notices of the Royal Astronomical Society, 2015, 454, 4476-4483.	4.4	20
294	The VLT LBG redshift survey – VI. Mapping H i in the proximity of zÂâ^¼Â3 LBGs with X-Shooter. Monthly Notices of the Royal Astronomical Society, 2017, 471, 2174-2186.	4.4	20
295	Chemically Dissected Rotation Curves of the Galactic Bulge from Main-sequence Proper Motions*. Astrophysical Journal, 2018, 858, 46.	4.5	20
296	Detailed Chemical Composition and Orbit of the Newly Discovered Globular Cluster FSR 1758: Implications for the Accretion of the Sequoia Dwarf Galaxy onto the Milky Way*. Astrophysical Journal, 2019, 882, 174.	4.5	20
297	Three candidate globular clusters discovered in the Galactic bulge. Monthly Notices of the Royal Astronomical Society: Letters, 2019, 484, L90-L94.	3.3	20
298	The asymptotic evolution of the stellar merger V1309 Sco: a Blue Straggler in the making?. Monthly Notices of the Royal Astronomical Society, 2019, 486, 1220-1224.	4.4	20
299	APOGEE discovery of a chemically atypical star disrupted from NGC 6723 and captured by the Milky Way bulge. Astronomy and Astrophysics, 2021, 647, A64.	5.1	20
300	Analysis of physical processes in eruptive YSOs with near-infrared spectra and multiwavelength light curves. Monthly Notices of the Royal Astronomical Society, 2021, 504, 830-856.	4.4	20
301	Discovery of a Large Population of Nitrogen-enhanced Stars in the Magellanic Clouds. Astrophysical Journal Letters, 2020, 903, L17.	8.3	20
302	The Zero Point of Extinction toward Baade's Window from RR Lyrae Stars. Astrophysical Journal, 1998, 494, 396-399.	4.5	19
303	HIGH-AMPLITUDE δ-SCUTIS IN THE LARGE MAGELLANIC CLOUD. Astronomical Journal, 2010, 140, 328-338.	4.7	19
304	The nature of 50 Palermo <i>Swift</i> -BAT hard X-ray objects through optical spectroscopy. Astronomy and Astrophysics, 2017, 602, A124.	5.1	19
305	Discovery of new Milky Way star cluster candidates in the 2 MASS point source catalog. V. Follow-up observations of the young stellar cluster candidates RCW 87, [BDSB2003] 164 and [DBSB2003] 1 Astronomy and Astrophysics, 2006, 455, 923-930.	725.1	19
306	A Dwarf Irregular Galaxy at the Edge of the Local Group: Stellar Populations and Distance of IC 5152. Astronomical Journal, 1999, 117, 1743-1757.	4.7	19

#	Article	IF	CITATIONS
307	The Araucaria Project: The Distance to the Local Group Galaxy WLM from Cepheid Variables Discovered in a Wide-Field Imaging Survey. Astronomical Journal, 2007, 134, 594-603.	4.7	18
308	Structure and kinematics of Type II Cepheids in the Galactic bulge based on near-infrared VVV data. Astronomy and Astrophysics, 2018, 619, A51.	5.1	18
309	Discovery of Tidal RR Lyrae Stars in the Bulge Globular Cluster M62 ^{â^—} . Astrophysical Journal Letters, 2018, 869, L10.	8.3	18
310	VVV Survey Microlensing: The Galactic Longitude Dependence. Astrophysical Journal Letters, 2018, 865, L5.	8.3	18
311	The central velocity dispersion of the Milky Way bulge. Astronomy and Astrophysics, 2018, 616, A83.	5.1	18
312	Discovery of a nitrogen-enhanced mildly metal-poor binary system: Possible evidence for pollution from an extinct AGB star. Astronomy and Astrophysics, 2019, 631, A97.	5.1	18
313	The Stellar Velocity Distribution Function in the Milky Way Galaxy. Astronomical Journal, 2020, 160, 43.	4.7	18
314	The long bar as seen by the VVV survey. Astronomy and Astrophysics, 2012, 546, A107.	5.1	18
315	Temperature constraints on the coldest brown dwarf known: WISE 0855-0714. Astronomy and Astrophysics, 2014, 570, L8.	5.1	18
316	Using classical Cepheids to study the far side of the Milky Way disk. Astronomy and Astrophysics, 2020, 640, A92.	5.1	18
317	VVVX- <i>Gaia</i> discovery of a low luminosity globular cluster in the Milky Way disk. Astronomy and Astrophysics, 2020, 642, L19.	5.1	18
318	VVV SURVEY OBSERVATIONS OF A MICROLENSING STELLAR MASS BLACK HOLE CANDIDATE IN THE FIELD OF THE GLOBULAR CLUSTER NGC 6553. Astrophysical Journal Letters, 2015, 810, L20.	8.3	17
319	Gauging the Helium Abundance of the Galactic Bulge RR Lyrae Stars*. Astrophysical Journal Letters, 2018, 853, L20.	8.3	17
320	Confirmation and physical characterization of the new bulge globular cluster Patchick 99 from the VVV and <i>Gaia</i> surveys. Astronomy and Astrophysics, 2021, 649, A86.	5.1	17
321	New Metal-poor Globular Clusters in the Galactic Bulge: The Elephant Graveyard*. Research Notes of the AAS, 2017, 1, 16.	0.7	17
322	MOONS: a multi-object optical and near-infrared spectrograph for the VLT. Proceedings of SPIE, 2012, , .	0.8	16
323	Massive open star clusters using the VVV survey. Astronomy and Astrophysics, 2014, 564, L9.	5.1	16
324	VISTA variables in the Sagittarius dwarf spheroidal galaxy: pulsation-versus dust-driven winds on the giant branches. Monthly Notices of the Royal Astronomical Society, 2014, 439, 2618-2637.	4.4	16

#	Article	IF	CITATIONS
325	CAPOS: The bulge Cluster APOgee Survey. Astronomy and Astrophysics, 2021, 652, A157.	5.1	16
326	Washington Photometry of Globular Cluster Giants: Ten Intermediate-Metallicity Clusters. Publications of the Astronomical Society of the Pacific, 1997, 109, 799.	3.1	16
327	Exploring the S-process History in the Galactic Disk: Cerium Abundances and Gradients in Open Clusters from the OCCAM/APOGEE Sample. Astrophysical Journal, 2022, 926, 154.	4.5	16
328	The Galaxy Density Environment of Gammaâ€Ray Burst Host Galaxies. Astrophysical Journal, 2004, 614, 84-90.	4.5	15
329	GALAXIES BEHIND THE GALACTIC PLANE: FIRST RESULTS AND PERSPECTIVES FROM THE VVV SURVEY. Astronomical Journal, 2012, 144, 127.	4.7	15
330	Ground-based transit observations of the super-Earth GJ 1214 b. Astronomy and Astrophysics, 2014, 56 A7.	5, _{5.1}	15
331	Near-IR period-luminosity relations for pulsating stars in <i>ï‰</i> Centauri (NGC 5139). Astronomy and Astrophysics, 2017, 604, A120.	5.1	15
332	The tale of the Milky Way globular cluster NGC 6362 – I. The orbit and its possible extended star debris features as revealed by Gaia DR2. Monthly Notices of the Royal Astronomical Society, 2019, 489, 4565-4573.	4.4	15
333	New type II Cepheids from VVV data towards the Galactic center. Astronomy and Astrophysics, 2019, 625, A151.	5.1	15
334	Homogeneous analysis of globular clusters from the APOGEE survey with the BACCHUS code – III. ωÂCen. Monthly Notices of the Royal Astronomical Society, 2021, 505, 1645-1660.	4.4	15
335	Cool stars in the Galactic center as seen by APOGEE. Astronomy and Astrophysics, 2020, 642, A81.	5.1	15
336	The atmospheric extinction at the complejo astron�mico el leoncito and the Bosque Alegre station. Astrophysics and Space Science, 1989, 158, 9-18.	1.4	14
337	THE FIRST CONFIRMED MICROLENS IN A GLOBULAR CLUSTER. Astrophysical Journal Letters, 2012, 744, L18.	8.3	14
338	Discovery of new companions to high proper motion stars from the VVV Survey. Astronomy and Astrophysics, 2013, 560, A21.	5.1	14
339	Confirmation of a galaxy cluster hidden behind the Galactic bulge using the VVV survey. Astronomy and Astrophysics, 2014, 569, A49.	5.1	14
340	New variable stars discovered in the fields of three Galactic open clusters using the VVV survey. New Astronomy, 2016, 49, 50-62.	1.8	14
341	Searching for Extragalactic Sources in the VISTA Variables in the VÃa Láctea Survey. Astronomical Journal, 2018, 155, 46.	4.7	14
342	Massive Stars in the SDSS-IV/APOGEE SURVEY. I. OB Stars. Astrophysical Journal, 2018, 855, 68.	4.5	14

#	Article	IF	CITATIONS
343	The VISCACHA survey – II. Structure of star clusters in the Magellanic Clouds periphery. Monthly Notices of the Royal Astronomical Society, 2020, 498, 205-222.	4.4	14
344	Discovery of a new nearby globular cluster with extreme kinematics located in the extension of a halo stream. Astronomy and Astrophysics, 2021, 650, L11.	5.1	14
345	VISTA's view of the Sagittarius dwarf spheroidal galaxy and southern Galactic Bulge. Monthly Notices of the Royal Astronomical Society, 2013, 436, 413-429.	4.4	13
346	Milky Way demographics with the VVV survey. Astronomy and Astrophysics, 2014, 571, A91.	5.1	13
347	Near-infrared photometry of WISE J085510.74–071442.5. Astronomy and Astrophysics, 2016, 592, A80.	5.1	13
348	YOUNG STELLAR CLUSTERS CONTAINING MASSIVE YOUNG STELLAR OBJECTS IN THE VVV SURVEY. Astronomical Journal, 2016, 152, 74.	4.7	13
349	New near-infrared <i>JHK</i> _{<i>s</i>} light-curve templates for RR Lyrae variables. Astronomy and Astrophysics, 2019, 625, A1.	5.1	13
350	Discovery of a mid-infrared protostellar outburst of exceptional amplitude. Monthly Notices of the Royal Astronomical Society, 2020, 499, 1805-1822.	4.4	13
351	Discovery of new globular clusters in the Sagittarius dwarf galaxy. Astronomy and Astrophysics, 2021, 647, L4.	5.1	13
352	Variable stars in the VVV globular clusters. Astronomy and Astrophysics, 2021, 651, A47.	5.1	13
353	CAPOS: The bulge Cluster APOgee Survey. Astronomy and Astrophysics, 2021, 652, A158.	5.1	13
354	Characterisation of extrasolar planetary transit candidates. Astronomy and Astrophysics, 2005, 431, 707-720.	5.1	13
355	Astrometry with the MACHO Data Archive. I. High Proper Motion Stars toward the Galactic Bulge and Magellanic Clouds. Astrophysical Journal, 2001, 562, 337-347.	4.5	13
356	Galactic ArchaeoLogIcaL ExcavatiOns (GALILEO). Astronomy and Astrophysics, 2022, 663, A126.	5.1	13
357	Strengthening the open cluster distance scale via VVV photometry. Astronomy and Astrophysics, 2012, 537, L4.	5.1	12
358	Anchors for the cosmic distance scale: the Cepheid QZ Normae in the open cluster NGC 6067. Astrophysics and Space Science, 2013, 347, 61-70.	1.4	12
359	Tracing the structure of the Milky Way with detached eclipsing binaries from the VVV survey – I. The method and initial resultsâ~ Monthly Notices of the Royal Astronomical Society, 2013, 432, 2895-2908.	4.4	12
360	Candidate star clusters toward the inner Milky Way discovered on deep-stacked <i>K</i> _S -band images from the VVV Survey. Astronomy and Astrophysics, 2017, 600, A112.	5.1	12

#	Article	IF	CITATIONS
361	An Automated Tool to Detect Variable Sources in the Vista Variables in the VÃa Láctea Survey: The VVV Variables (V ⁴) Catalog of Tiles d001 and d002. Astrophysical Journal, 2018, 864, 11.	4.5	12
362	Confirmation of two new Galactic bulge globular clusters: FSR 19 and FSR 25. Astronomy and Astrophysics, 2021, 654, A39.	5.1	12
363	What is the Milky Way outer halo made of?. Astronomy and Astrophysics, 2017, 608, A145.	5.1	12
364	Deep optical observations of the fields of two nearby millisecond pulsars with the VLT. Astronomy and Astrophysics, 2003, 406, 245-252.	5.1	12
365	An Unusual Brightening of the Eclipsing Binary Star AKO 9 in the Globular Cluster 47 Tucanae Observed with the [ITAL]Hubble Space Telescope[/ITAL]. Astrophysical Journal, 1997, 474, L27-L30.	4.5	11
366	The Microlensing Planet Finder: completing the census of extrasolar planets in the Milky Way. , 2004, ,		11
367	The Local Group Census: searching for planetary nebulae in IC 1613, WLM and GR8. Monthly Notices of the Royal Astronomical Society, 2005, 361, 517-524.	4.4	11
368	TWO JUPITER-MASS PLANETS ORBITING HD 154672 AND HD 205739. Astronomical Journal, 2008, 136, 1901-1905.	4.7	11
369	Millimagnitude photometry for transiting extrasolar planetary candidates. Astronomy and Astrophysics, 2010, 509, A4.	5.1	11
370	Near-infrared photometry of Galactic planetary nebulae with the VVV Survey. Astronomy and Astrophysics, 2013, 552, A74.	5.1	11
371	The long bar as seen by the VVV Survey. Astronomy and Astrophysics, 2013, 559, A11.	5.1	11
372	Investigating potential planetary nebula/cluster pairs. Astronomy and Astrophysics, 2014, 561, A119.	5.1	11
373	Comparing the properties of the X-shaped bulges of NGC 4710 and the Milky Way with MUSE. Astronomy and Astrophysics, 2016, 591, A7.	5.1	11
374	Near-infrared photometry and spectroscopy of the low Galactic latitude globular cluster 2MASS-GCÂ03. Monthly Notices of the Royal Astronomical Society, 2016, 462, 501-510.	4.4	11
375	New Galactic star clusters discovered in the disc area of the VVVX survey. Monthly Notices of the Royal Astronomical Society, 2018, 481, 3902-3920.	4.4	11
376	The Orbit of the New Milky Way Globular Cluster FSR1716Â=ÂVVV-GC05 ^{â^—} . Astrophysical Journal, 2018, 863, 78.	4.5	11
377	VVV WIN 1733â~'3349: a low extinction window to probe the far side of the Milky Way bulge. Monthly Notices of the Royal Astronomical Society: Letters, 2020, 494, L32-L36.	3.3	11
378	The RR Lyrae projected density distribution from the Galactic centre to the halo. Astronomy and Astrophysics, 2021, 646, A45.	5.1	11

#	Article	IF	CITATIONS
379	Using classical Cepheids to study the far side of the Milky Way disk. Astronomy and Astrophysics, 2021, 654, A138.	5.1	11
380	VVV Survey Microlensing: The Galactic Latitude Dependence. Astrophysical Journal, 2020, 889, 56.	4.5	11
381	The extinction law in the inner 3 × 3 deg2 of the Milky Way and the red clump absolute magnitude in the inner bar-bulge. Monthly Notices of the Royal Astronomical Society, 2022, 514, 2407-2424.	4.4	11
382	Preliminary abundance analysis of galactic bulge main sequence, subgiant, and giant branch stars observed during microlensing with Keck/HIRES. , 2003, , .		10
383	Confirmation of a New Metal-poor Globular Cluster in the Galactic Bulge ^{â^—} . Astrophysical Journal, 2018, 866, 12.	4.5	10
384	New Candidate Planetary Nebulae in Galactic Globular Clusters from the VVV Survey*. Astrophysical Journal Letters, 2019, 884, L15.	8.3	10
385	The VISTA Variables in the VÃa Láctea infrared variability catalogue (VIVA-I). Monthly Notices of the Royal Astronomical Society, 2020, 496, 1730-1756.	4.4	10
386	The search for extratidal star candidates around Galactic globular clusters NGC 2808, NGC 6266, and NGC 6397 with <i>Gaia</i> DR2 astrometry. Astronomy and Astrophysics, 2021, 645, A116.	5.1	10
387	Stellar population properties for a sample of hard X-ray AGNs. Astronomy and Astrophysics, 2013, 556, A135.	5.1	10
388	Linear polarization of stars in seven metal-poor globular clusters. Astronomical Journal, 1992, 103, 871.	4.7	10
389	The Elephant Graveyard: 24 New Globular Cluster Candidates in the Galactic Bulge*. Research Notes of the AAS, 2017, 1, 54.	0.7	10
390	Millimagnitude Optical Photometry for the Transiting Planetary Candidate OGLEâ€TRâ€109. Astrophysical Journal, 2006, 647, 587-593.	4.5	9
391	SIMPLE: a high-resolution near-infrared spectrometer for the E-ELT. Proceedings of SPIE, 2010, , .	0.8	9
392	M dwarfs in the b201 tile of the VVV survey. Astronomy and Astrophysics, 2014, 571, A36.	5.1	9
393	Properties of the solar neighbor WISE J072003.20â^'084651.2. Astronomy and Astrophysics, 2015, 574, A64	. 5.1	9
394	WV high proper motion stars – I. The catalogue of bright <i>K</i> _S ≤3.5 stars. Monthly Notices of the Royal Astronomical Society, 2017, 464, 1247-1258.	4.4	9
395	A New Globular Cluster in the Area of VVVX. Publications of the Astronomical Society of Australia, 2018, 35, .	3.4	9
396	A colour-excess extinction map of the southern Galactic disc from the VVV and GLIMPSE surveys. Monthly Notices of the Royal Astronomical Society, 2019, 488, 2650-2657.	4.4	9

#	Article	IF	CITATIONS
397	Long-term stellar variability in the Galactic Centre region. Monthly Notices of the Royal Astronomical Society, 2019, 482, 5567-5586.	4.4	9
398	The First Galaxy Cluster Discovered by the VISTA Variables in the VÃa Láctea Survey. Astrophysical Journal, 2019, 874, 46.	4.5	9
399	Candidate Hypervelocity Red Clump Stars in the Galactic Bulge Found Using the VVV and Gaia Surveys*. Astrophysical Journal Letters, 2019, 887, L39.	8.3	9
400	An enquiry on the origins of N-rich stars in the inner Galaxy based on APOGEE chemical compositions. Monthly Notices of the Royal Astronomical Society, 2021, 504, 1657-1667.	4.4	9
401	Survival in an extreme environment: Which is the closest globular cluster to the Galactic centre?. Astronomy and Astrophysics, 2021, 648, A86.	5.1	9
402	VVV-WIT-08: the giant star that blinked. Monthly Notices of the Royal Astronomical Society, 2021, 505, 1992-2008.	4.4	9
403	Eight more low luminosity globular clusters in the Sagittarius dwarf galaxy. Astronomy and Astrophysics, 2021, 650, L12.	5.1	9
404	Physical characterization of recently discovered globular clusters in the Sagittarius dwarf spheroidal galaxy. Astronomy and Astrophysics, 2021, 654, A23.	5.1	9
405	APOGEE-2S Discovery of Light- and Heavy-element Abundance Correlations in the Bulge Globular Cluster NGC 6380. Astrophysical Journal Letters, 2021, 918, L9.	8.3	9
406	A deep near-infrared view of the Galactic globular cluster 2 MASS GC 02. Astronomy and Astrophysics, 2007, 474, 121-127.	5.1	9
407	Infrared Photometry of 487 Sources in the Inner Regions of NGC 5128 (Centaurus A). Astrophysical Journal, Supplement Series, 1997, 109, 397-416.	7.7	9
408	Inspection of 19 globular cluster candidates in the Galactic bulge with the VVV survey. Astronomy and Astrophysics, 2022, 658, A120.	5.1	9
409	Variable stars in the Quintuplet stellar cluster with the VVV survey. Monthly Notices of the Royal Astronomical Society, 2016, 462, 1180-1191.	4.4	8
410	The Emergence of the Infrared Transient VVV-WIT-06 [*] . Astrophysical Journal Letters, 2017, 849, L23.	8.3	8
411	On the Chemical Abundances of Miras in Clusters: V1 in the Metal-rich Globular NGC 5927*. Astrophysical Journal Letters, 2018, 855, L9.	8.3	8
412	Forty-four New and Known M-dwarf Multiples in the SDSS-III/APOGEE M-dwarf Ancillary Science Sample. Astronomical Journal, 2018, 156, 45.	4.7	8
413	A Chemical and Kinematical Analysis of the Intermediate-age Open Cluster IC 166 from APOGEE and Gaia DR2. Astronomical Journal, 2018, 156, 94.	4.7	8
414	The G305 Star-forming Region. I. Newly Classified Hot Stars*. Astronomical Journal, 2019, 158, 46.	4.7	8

#	Article	IF	CITATIONS
415	VVV Survey of Blue Horizontal Branch Stars in the Bulge–Halo Transition Region of the Milky Way. Astrophysical Journal, 2019, 872, 206.	4.5	8
416	APOGEE-2S view of the globular cluster Patchick 125 (Gran 3). Astronomy and Astrophysics, 2022, 657, A84.	5.1	8
417	CAPOS: The bulge Cluster APOgee Survey. Astronomy and Astrophysics, 2022, 658, A116.	5.1	8
418	Unveiling the nature of 12 new low-luminosity Galactic globular cluster candidates. Astronomy and Astrophysics, 2022, 659, A155.	5.1	8
419	A revised DDO abundance calibration for population I red giants. Journal of Astrophysics and Astronomy, 1993, 14, 145-165.	1.0	7
420	Clustering and Light Profiles of Galaxies in the Environment of 20 Ultra-Steep-Spectrum Radio Sources. Astronomical Journal, 2004, 127, 679-685.	4.7	7
421	The Galactic bulge: a review. Proceedings of the International Astronomical Union, 2007, 3, 323-332.	0.0	7
422	Massive open star clusters using the VVV survey. Astronomy and Astrophysics, 2015, 584, A31.	5.1	7
423	WW-WIT-07: another Boyajian's star or a Mamajek's object?. Monthly Notices of the Royal Astronomical Society, 2019, 482, 5000-5006.	4.4	7
424	The VVV near-IR galaxy catalogue beyond the Galactic disc. Monthly Notices of the Royal Astronomical Society, 2021, 502, 601-620.	4.4	7
425	Overdensity of VVV galaxies behind the Galactic bulge. Astronomy and Astrophysics, 2021, 646, A146.	5.1	7
426	APOGEE view of the globular cluster NGCÂ6544. Monthly Notices of the Royal Astronomical Society, 2021, 504, 3494-3508.	4.4	7
427	APOGEE-2 Discovery of a Large Population of Relatively High-metallicity Globular Cluster Debris. Astrophysical Journal Letters, 2021, 918, L37.	8.3	7
428	VVV Survey Microlensing: Catalog of Best and Forsaken Events. Astrophysical Journal, 2020, 893, 65.	4.5	7
429	ZEN and the search for high-redshift galaxies. New Astronomy Reviews, 2006, 50, 70-74.	12.8	6
430	Variability and stellar populations with deep optical-IR images of the Milky Way disc: matching VVV with VLT/VIMOS data. Astronomy and Astrophysics, 2012, 537, A116.	5.1	6
431	Optical spectroscopic classification of 35 hard X-ray sources from the Swift-BAT 70-month catalogue. Astrophysics and Space Science, 2019, 364, 1.	1.4	6
432	KMT-2018-BLG-1292: A Super-Jovian Microlens Planet in the Galactic Plane. Astronomical Journal, 2020, 159, 58.	4.7	6

#	Article	IF	CITATIONS
433	Massive Stars in the SDSS-IV/APOGEE2 Survey. III. New OB Stars in the Direction of the Sagittarius Spiral Arm. Astrophysical Journal, Supplement Series, 2020, 247, 17.	7.7	6
434	Gemini/Phoenix <i>H</i> -band analysis of the globular cluster AL 3. Astronomy and Astrophysics, 2021, 648, A16.	5.1	6
435	An intriguing globular cluster in the Galactic bulge from the VVV survey. Astronomy and Astrophysics, 2021, 652, A129.	5.1	6
436	The VVV survey: Long-period variable stars. Astronomy and Astrophysics, 2022, 660, A35.	5.1	6
437	Deep census of variable stars in a VLT/VIMOS field in Carina. Astronomy and Astrophysics, 2009, 503, 651-662.	5.1	5
438	WISE J061213.85-303612.5: a new T-dwarf binary candidate. Astronomy and Astrophysics, 2015, 578, A1.	5.1	5
439	Massive Stars in the SDSS-IV/APOGEE-2 Survey. II. OB-stars in the W345 Complexes. Astrophysical Journal, 2019, 873, 66.	4.5	5
440	Massive stars in the young cluster VVV CL074. Astronomy and Astrophysics, 2019, 627, A170.	5.1	5
441	Infrared photometry and CaT spectroscopy of globular cluster M 28 (NGC 6626). Astronomy and Astrophysics, 2021, 648, A18.	5.1	5
442	Unveiling short-period binaries in the inner VVV bulge. Monthly Notices of the Royal Astronomical Society, 2021, 504, 654-666.	4.4	5
443	FSR 1776: A new globular cluster in the Galactic bulge?. Astronomy and Astrophysics, 2022, 657, A67.	5.1	5
444	APOGEE detection of N-rich stars in the tidal tails of Palomar 5. Monthly Notices of the Royal Astronomical Society, 2022, 510, 3727-3733.	4.4	5
445	A new low-luminosity globular cluster discovered in the Milky Way with the VVVX survey. Astronomy and Astrophysics, 2022, 662, A95.	5.1	5
446	Searching for active galactic nuclei among unidentified INTEGRAL sources. Monthly Notices of the Royal Astronomical Society, 2011, , no-no.	4.4	4
447	Unraveling the Infrared Transient VVV-WIT-06: The Case for the Origin as a Classical Nova*. Astrophysical Journal, 2018, 867, 99.	4.5	4
448	VVV-WIT-04: an extragalactic variable source caught by the VVV Survey. Monthly Notices of the Royal Astronomical Society, 2019, 490, 1171-1178.	4.4	4
449	The G 305 Star-forming Region. II. Irregular Variable Stars. Astrophysical Journal, 2021, 914, 28.	4.5	4
450	Background Giants in the Field of the Globular Cluster M22: Kinematics of the Galactic Bulge. Astronomical Journal, 1996, 112, 590.	4.7	4

#	Article	IF	CITATIONS
451	Fifty Star Cluster Candidates toward the Galactic Bulge from VVV and Gaia. Research Notes of the AAS, 2019, 3, 101.	0.7	4
452	Cobalt and copper abundances in 56 Galactic bulge red giants. Astronomy and Astrophysics, 2020, 640, A89.	5.1	4
453	A deep near-infrared view of the Ophiuchus galaxy cluster. Astronomy and Astrophysics, 2022, 663, A158.	5.1	4
454	Millimagnitude Photometry for Transiting Extrasolar Planetary Candidates. IV. Solution to the Puzzle of the Extremely Red OGLEâ€TRâ€82 Primary. Astrophysical Journal, 2007, 669, 1345-1353.	4.5	3
455	Transiting Planets in the Galactic Bulge from SWEEPS Survey and Implications. Proceedings of the International Astronomical Union, 2008, 4, 45-53.	0.0	3
456	DETACHED DUST SHELL AROUND WOLF-RAYET STAR WR60-6 IN THE YOUNG STELLAR CLUSTER VVV CL036. Astronomical Journal, 2014, 147, 18.	4.7	3
457	Spectrophotometric characterization of high proper motion sources from <i>WISE</i> . Monthly Notices of the Royal Astronomical Society, 2015, 454, 4054-4065.	4.4	3
458	High-energy gamma-ray sources in the VVV survey – I. The blazars. Monthly Notices of the Royal Astronomical Society, 2020, 491, 3448-3460.	4.4	3
459	WW-WIT-01: highly obscured classical nova or protostellar collision?. Monthly Notices of the Royal Astronomical Society, 2020, 492, 4847-4857.	4.4	3
460	WW survey near-infrared colour catalogue of known variable stars. Astronomy and Astrophysics, 2021, 647, A169.	5.1	3
461	VVV Survey Microlensing: Candidate Events with a Source in the Far Disk. Astrophysical Journal, 2020, 902, 35.	4.5	3
462	APOGEE-2S Mg–Al anti-correlation of the metal-poor globular cluster NGC 2298. Astronomy and Astrophysics, 2022, 662, A47.	5.1	3
463	HSTÂphotometry of the binary globular cluster SersicÂ13N-S inÂNGCÂ5128. Astronomy and Astrophysics, 2005, 442, 437-442.	5.1	2
464	REVEALING THE NATURE OF NEW UNIDENTIFIED INTEGRAL SOURCES. International Journal of Modern Physics D, 2010, 19, 819-824.	2.1	2
465	Stellar variability in the VVV survey: overview and first results. Proceedings of the International Astronomical Union, 2013, 9, 395-396.	0.0	2
466	Search for exoplanetary transits in the Galactic bulge. Monthly Notices of the Royal Astronomical Society, 2019, 485, 4502-4508.	4.4	2
467	Massive Stars in the SDSS-IV-APOGEE Survey: Wolf–Rayet Stars of the WN Type. Astrophysical Journal, 2020, 891, 107.	4.5	2
468	Small-scale star formation as revealed by VVVX galactic cluster candidates. Monthly Notices of the Royal Astronomical Society, 2020, 499, 3522-3533.	4.4	2

#	Article	lF	CITATIONS
469	A hundred new eclipsing binary system candidates studied in a near-infrared window in the VVV survey. Publications of the Astronomical Society of Australia, 2020, 37, .	3.4	2
470	Spectroscopic and light curve characterization of bulge microlensing events. Astronomy and Astrophysics, 2007, 466, 157-164.	5.1	2
471	Resolving Distant Galaxies Into Stars. Globular Clusters - Guides To Galaxies, 1995, , 236-240.	0.1	2
472	VVVX Near-IR Photometry for 99 Low-mass Stars in the <i>Gaia</i> EDR3 Catalog of Nearby Stars. Astronomy and Astrophysics, 2022, 660, A131.	5.1	2
473	Galaxy clustering in the VVV near-IR galaxy catalogue. Monthly Notices of the Royal Astronomical Society, 2022, 513, 2747-2760.	4.4	2
474	<title>MACHO data pipeline</title> ., 1998,,.		1
475	Globular Cluster Systems: Comparison with the Milky Way. Symposium - International Astronomical Union, 2002, 207, 68-72.	0.1	1
476	Light echoes of SNe in the LMC. Proceedings of the International Astronomical Union, 2006, 2, 313-313.	0.0	1
477	Masses and M/L Ratios of Bright Globular Clusters in NGC 5128. Proceedings of the International Astronomical Union, 2007, 3, 418-422.	0.0	1
478	High-Cadence Transit Timing Variation Monitoring of Extrasolar Planets. EPJ Web of Conferences, 2011, 11, 05008.	0.3	1
479	Rest et al. reply. Nature, 2012, 486, E1-E2.	27.8	1
480	The VVV Survey: Globular Clusters and more. Proceedings of the International Astronomical Union, 2019, 14, 31-34.	0.0	1
481	Drifting features: Detection and evaluation in the context of automatic RR Lyrae identification in the VVV. Astronomy and Astrophysics, 2021, 652, A151.	5.1	1
482	Abundances in the Galactic Bulge. Globular Clusters - Guides To Galaxies, 2006, , 87-92.	0.1	1
483	Spectroscopic Abundances and Radial Velocities of the Galactic Globular Clusters 2MASS GC01 and 2MASS GC02: Preliminary Results. Globular Clusters - Guides To Galaxies, 2009, , 17-19.	0.1	1
484	VVV Search for New Young Clusters Towards the Star Forming Regions in Our Galaxy: First Results. Thirty Years of Astronomical Discovery With UKIRT, 2012, , 101-103.	0.3	1
485	Impossible Survivors: New Star Cluster Candidates in the Galactic Bulge. Research Notes of the AAS, 2020, 4, 218.	0.7	1
486	Is TerzanÂ5 the remnant of a building block of the Galactic bulge? Evidence from APOGEE. Monthly Notices of the Royal Astronomical Society, 2022, 513, 3429-3443.	4.4	1

#	Article	IF	CITATIONS
487	Bulge δ Scuti stars in the MACHO database. Symposium - International Astronomical Union, 1997, 189, 293-298.	0.1	0
488	3.17. MACHO RR Lyrae stars in the Galactic bulge: the spatial distribution. Symposium - International Astronomical Union, 1998, 184, 123-124.	0.1	0
489	Old stellar populations in NGC 5128. Astrophysics and Space Science, 2002, 281, 425-426.	1.4	0
490	Centaurus A: VLT Views of the Nearest Giant Elliptical Galaxy. Astrophysics and Space Science, 2004, 290, 363-377.	1.4	0
491	Commission 45: Stellar Classification. Proceedings of the International Astronomical Union, 2005, 1, 221-231.	0.0	0
492	Detailed abundance analysis of the bulge globular cluster NGC 6553. Proceedings of the International Astronomical Union, 2005, 1, 327-328.	0.0	0
493	Spectra of bulge stars with known abundance ratios for population synthesis. Proceedings of the International Astronomical Union, 2006, 2, .	0.0	0
494	Stellar proper motions in the Galactic bulge with ACS/WFC on HST. Proceedings of the International Astronomical Union, 2007, 3, 361-362.	0.0	0
495	High-cadence transit timing observations of extrasolar planets. AIP Conference Proceedings, 2008, , .	0.4	0
496	Kinematics of the SWEEPS transiting planet candidates. Proceedings of the International Astronomical Union, 2008, 4, 512-515.	0.0	0
497	Period variations in extrasolar transiting planet OGLE-TR-111b. Proceedings of the International Astronomical Union, 2008, 4, 450-453.	0.0	0
498	Stellar abundances tracing the formation of the Galactic Bulge. Proceedings of the International Astronomical Union, 2008, 4, 153-158.	0.0	0
499	VISTA variable survey in the Milky Way. Proceedings of the International Astronomical Union, 2009, 5, 287-290.	0.0	0
500	Metal-poor globular clusters of the galactic bulge. Proceedings of the International Astronomical Union, 2009, 5, 344-345.	0.0	0
501	Characterisation of extrasolar planetary transit candidates. Astronomy and Astrophysics, 2010, 522, A4.	5.1	0
502	New planetary transit candidates in Carina. EAS Publications Series, 2010, 42, 175-177.	0.3	0
503	VVV: The near-IR Milky Way bulge and plane survey. EPJ Web of Conferences, 2012, 19, 09009.	0.3	0
504	DIVISION VII: COMMISSION 37: STAR CLUSTERS AND ASSOCIATIONS. Proceedings of the International Astronomical Union, 2013, 10, 128-131.	0.0	0

#	Article	IF	CITATIONS
505	DIVISION IX: COMMISSION 30: RADIAL VELOCITIES. Proceedings of the International Astronomical Union, 2013, 10, 132-133.	0.0	0
506	Red Optical Planet Survey: A radial velocity search for low mass M dwarf planets. EPJ Web of Conferences, 2013, 47, 05002.	0.3	0
507	The inner Galactic globular clusters. EPJ Web of Conferences, 2013, 43, 02005.	0.3	0
508	Peering through the dust: Precise astrometry in the Galactic mid-plane with the VVV survey. EAS Publications Series, 2014, 67-68, 401-401.	0.3	0
509	Massive infrared clusters in the Milky Way. Proceedings of the International Astronomical Union, 2016, 12, 263-270.	0.0	0
510	Variable stars in the VVV globular clusters. EPJ Web of Conferences, 2017, 152, 01022.	0.3	0
511	Pulsating stars in ω Centauri. Near-IR properties and period-luminosity relations. EPJ Web of Conferences, 2017, 152, 07005.	0.3	0
512	Synergies between the VVVX Survey and the S-PLUS Galactic Survey. Proceedings of the International Astronomical Union, 2017, 13, 358-359.	0.0	0
513	WV Microlensing events in the far side of the Milky Way. Proceedings of the International Astronomical Union, 2019, 14, 35-37.	0.0	0
514	Assessing the Stellar Population and the Environment of an H ii Region on the Far Side of the Galaxy*. Astrophysical Journal, 2021, 911, 91.	4.5	0
515	Properties of RR Lyrae Stars in the Inner Regions of the Large Magellanic Cloud. II. The Extended Sample. Globular Clusters - Guides To Galaxies, 2007, , 45-46.	0.1	0
516	Abundances in the Galactic bulge. Physica Scripta, 2008, T133, 014032.	2.5	0
517	Bulge δ Scuti Stars in the Macho Database. , 1997, , 293-298.		0
518	VVV Survey Orbital Period Confirmation for the Cataclysmic Variable IGR J17014-4306. Research Notes of the AAS, 2018, 2, 39.	0.7	0
519	FSR19 and FSR25 confirmed as two new faint and metal-rich globular clusters in the galactic bulge. Communications of the Byurakan Astrophysical Observatory, 0, , 311-315.	0.0	0
520	HST Photometry of the Binary Globular Cluster Sersic 13N-S in NGC5128[1]. Globular Clusters - Guides To Galaxies, 2009, , 127-129.	0.1	0
521	Metal-Poor Globular Clusters of the Galactic Bulge. Globular Clusters - Guides To Galaxies, 2009, , 207-208.	0.1	0
522	Velocity Dispersions of Bright Globular Clusters in NGC 5128. Globular Clusters - Guides To Galaxies, 2009, , 311-312.	0.1	0

#	Article	IF	CITATIONS
523	Microlensing events in the Galactic bulge. , 2022, , .		Ο