
Alexander A Khromykh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/577549/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Highly Structured, Nuclease-Resistant, Noncoding RNA Produced by Flaviviruses Is Required for Pathogenicity. Cell Host and Microbe, 2008, 4, 579-591.	5.1	420
2	Essential Role of Cyclization Sequences in Flavivirus RNA Replication. Journal of Virology, 2001, 75, 6719-6728.	1.5	336
3	Subcellular Localization and Some Biochemical Properties of the Flavivirus Kunjin Nonstructural Proteins NS2A and NS4A. Virology, 1998, 245, 203-215.	1.1	282
4	Inhibition of Interferon Signaling by the New York 99 Strain and Kunjin Subtype of West Nile Virus Involves Blockage of STAT1 and STAT2 Activation by Nonstructural Proteins. Journal of Virology, 2005, 79, 1934-1942.	1.5	274
5	Cholesterol Manipulation by West Nile Virus Perturbs the Cellular Immune Response. Cell Host and Microbe, 2007, 2, 229-239.	5.1	255
6	Noncoding Flavivirus RNA Displays RNA Interference Suppressor Activity in Insect and Mammalian Cells. Journal of Virology, 2012, 86, 13486-13500.	1.5	248
7	Crystal Structure of the RNA Polymerase Domain of the West Nile Virus Non-structural Protein 5. Journal of Biological Chemistry, 2007, 282, 10678-10689.	1.6	222
8	A Single Amino Acid Substitution in the West Nile Virus Nonstructural Protein NS2A Disables Its Ability To Inhibit Alpha/Beta Interferon Induction and Attenuates Virus Virulence in Mice. Journal of Virology, 2006, 80, 2396-2404.	1.5	221
9	Chikungunya Virus Nonstructural Protein 2 Inhibits Type I/II Interferon-Stimulated JAK-STAT Signaling. Journal of Virology, 2010, 84, 10877-10887.	1.5	209
10	Regulated Cleavages at the West Nile Virus NS4A-2K-NS4B Junctions Play a Major Role in Rearranging Cytoplasmic Membranes and Golgi Trafficking of the NS4A Protein. Journal of Virology, 2006, 80, 4623-4632.	1.5	200
11	Role of Nonstructural Protein NS2A in Flavivirus Assembly. Journal of Virology, 2008, 82, 4731-4741.	1.5	195
12	West Nile virus encodes a microRNA-like small RNA in the 3' untranslated region which up-regulates GATA4 mRNA and facilitates virus replication in mosquito cells. Nucleic Acids Research, 2012, 40, 2210-2223.	6.5	194
13	RNA Structures Required for Production of Subgenomic Flavivirus RNA. Journal of Virology, 2010, 84, 11407-11417.	1.5	190
14	The NS5 Protein of the Virulent West Nile Virus NY99 Strain Is a Potent Antagonist of Type I Interferon-Mediated JAK-STAT Signaling. Journal of Virology, 2010, 84, 3503-3515.	1.5	189
15	A noncoding RNA produced by arthropod-borne flaviviruses inhibits the cellular exoribonuclease XRN1 and alters host mRNA stability. Rna, 2012, 18, 2029-2040.	1.6	177
16	West Nile Virus Noncoding Subgenomic RNA Contributes to Viral Evasion of the Type I Interferon-Mediated Antiviral Response. Journal of Virology, 2012, 86, 5708-5718.	1.5	170
17	West Nile Virus Core Protein. Structure, 2004, 12, 1157-1163.	1.6	159
18	Interferon Response Factors 3 and 7 Protect against Chikungunya Virus Hemorrhagic Fever and Shock. Journal of Virology, 2012, 86, 9888-9898.	1.5	157

#	Article	IF	CITATIONS
19	Coupling between Replication and Packaging of Flavivirus RNA: Evidence Derived from the Use of DNA-Based Full-Length cDNA Clones of Kunjin Virus. Journal of Virology, 2001, 75, 4633-4640.	1.5	153
20	Nanopatchâ€Targeted Skin Vaccination against West Nile Virus and Chikungunya Virus in Mice. Small, 2010, 6, 1776-1784.	5.2	150
21	NS1′ of Flaviviruses in the Japanese Encephalitis Virus Serogroup Is a Product of Ribosomal Frameshifting and Plays a Role in Viral Neuroinvasiveness. Journal of Virology, 2010, 84, 1641-1647.	1.5	150
22	Molecular and Functional Analyses of Kunjin Virus Infectious cDNA Clones Demonstrate the Essential Roles for NS2A in Virus Assembly and for a Nonconservative Residue in NS3 in RNA Replication. Journal of Virology, 2003, 77, 7804-7813.	1.5	149
23	Noncoding Subgenomic Flavivirus RNA: Multiple Functions in West Nile Virus Pathogenesis and Modulation of Host Responses. Viruses, 2014, 6, 404-427.	1.5	148
24	Analysis of Adaptive Mutations in Kunjin Virus Replicon RNA Reveals a Novel Role for the Flavivirus Nonstructural Protein NS2A in Inhibition of Beta Interferon Promoter-Driven Transcription. Journal of Virology, 2004, 78, 12225-12235.	1.5	146
25	Multiple Immune Factors Are Involved in Controlling Acute and Chronic Chikungunya Virus Infection. PLoS Neglected Tropical Diseases, 2014, 8, e3354.	1.3	145
26	cis- and trans-Acting Elements in Flavivirus RNA Replication. Journal of Virology, 2000, 74, 3253-3263.	1.5	139
27	<i>trans</i> -Complementation of Flavivirus RNA Polymerase Gene NS5 by Using Kunjin Virus Replicon-Expressing BHK Cells. Journal of Virology, 1998, 72, 7270-7279.	1.5	137
28	Proteins C and NS4B of the Flavivirus Kunjin Translocate Independently into the Nucleus. Virology, 1997, 234, 31-41.	1.1	134
29	Encapsidation of the Flavivirus Kunjin Replicon RNA by Using a Complementation System Providing Kunjin Virus Structural Proteins in <i>trans</i> . Journal of Virology, 1998, 72, 5967-5977.	1.5	128
30	Characterization of Virulent West Nile Virus Kunjin Strain, Australia, 2011. Emerging Infectious Diseases, 2012, 18, 792-800.	2.0	121
31	Effect of Wolbachia on Replication of West Nile Virus in a Mosquito Cell Line and Adult Mosquitoes. Journal of Virology, 2013, 87, 851-858.	1.5	110
32	Nascent Flavivirus RNA Colocalizedin Situwith Double-Stranded RNA in Stable Replication Complexes. Virology, 1999, 258, 108-117.	1.1	109
33	Comparative mechanistic studies of de novo RNA synthesis by flavivirus RNA-dependent RNA polymerases. Virology, 2006, 351, 145-158.	1.1	106
34	DNA vaccine coding for the full-length infectious Kunjin virus RNA protects mice against the New York strain of West Nile virus. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 10460-10464.	3.3	104
35	RNA binding properties of core protein of the flavivirus Kunjin. Archives of Virology, 1996, 141, 685-699.	0.9	101
36	Stable High-Level Expression of Heterologous Genes In Vitro and In Vivo by Noncytopathic DNA-Based Kunjin Virus Replicon Vectors. Journal of Virology, 2000, 74, 4394-4403.	1.5	101

#	Article	IF	CITATIONS
37	Efficient <i>trans</i> -Complementation of the Flavivirus Kunjin NS5 Protein but Not of the NS1 Protein Requires Its Coexpression with Other Components of the Viral Replicase. Journal of Virology, 1999, 73, 10272-10280.	1.5	100
38	Kunjin RNA replication and applications ofKunjin replicons. Advances in Virus Research, 2003, 59, 99-140.	0.9	98
39	Functional non-coding RNAs derived from the flavivirus 3′ untranslated region. Virus Research, 2015, 206, 53-61.	1.1	97
40	Expression and purification of enzymatically active recombinant RNA-dependent RNA polymerase (NS5) of the flavivirus Kunjin. Journal of Virological Methods, 2001, 92, 37-44.	1.0	96
41	Expression of Mosquito MicroRNA Aae-miR-2940-5p Is Downregulated in Response to West Nile Virus Infection To Restrict Viral Replication. Journal of Virology, 2014, 88, 8457-8467.	1.5	90
42	A versatile reverse genetics platform for SARS-CoV-2 and other positive-strand RNA viruses. Nature Communications, 2021, 12, 3431.	5.8	89
43	Complementation Analysis of the Flavivirus Kunjin NS3 and NS5 Proteins Defines the Minimal Regions Essential for Formation of a Replication Complex and Shows a Requirement of NS3 in cis for Virus Assembly. Journal of Virology, 2002, 76, 10766-10775.	1.5	84
44	Post-translational regulation and modifications of flavivirus structural proteins. Journal of General Virology, 2015, 96, 1551-1569.	1.3	83
45	Subgenomic flaviviral RNAs: What do we know after the first decade of research. Antiviral Research, 2018, 159, 13-25.	1.9	82
46	Crystal Structure and Activity of Kunjin Virus NS3 Helicase; Protease and Helicase Domain Assembly in the Full Length NS3 Protein. Journal of Molecular Biology, 2007, 372, 444-455.	2.0	78
47	<i>trans</i> -Complementation Analysis of the Flavivirus Kunjin ns5 Gene Reveals an Essential Role for Translation of Its N-Terminal Half in RNA Replication. Journal of Virology, 1999, 73, 9247-9255.	1.5	75
48	Ebola virus glycoprotein GP is not cytotoxic when expressed constitutively at a moderate level. Journal of General Virology, 2006, 87, 1247-1257.	1.3	74
49	Noncytopathic Flavivirus Replicon RNA-Based System for Expression and Delivery of Heterologous Genes. Virology, 1999, 255, 366-375.	1.1	72
50	A vaccinia-based singleÂvector construct multi-pathogen vaccine protects against both Zika and chikungunya viruses. Nature Communications, 2018, 9, 1230.	5.8	71
51	Kunjin Virus Replicon Vaccine Vectors Induce Protective CD8 + T-Cell Immunity. Journal of Virology, 2002, 76, 3791-3799.	1.5	70
52	Significance in Replication of the Terminal Nucleotides of the Flavivirus Genome. Journal of Virology, 2003, 77, 10623-10629.	1.5	70
53	Kunjin virus replicons: an RNA-based, non-cytopathic viral vector system for protein production, vaccine and gene therapy applications. Expert Opinion on Biological Therapy, 2006, 6, 135-145.	1.4	70
54	A recombinant platform for flavivirus vaccines and diagnostics using chimeras of a new insect-specific virus. Science Translational Medicine, 2019, 11, .	5.8	70

#	Article	IF	CITATIONS
55	Wolbachia Infection Modifies the Profile, Shuttling and Structure of MicroRNAs in a Mosquito Cell Line. PLoS ONE, 2014, 9, e96107.	1.1	68
56	Tetracycline-Inducible Packaging Cell Line for Production of Flavivirus Replicon Particles. Journal of Virology, 2004, 78, 531-538.	1.5	66
57	A broadly protective antibody that targets the flavivirus NS1 protein. Science, 2021, 371, 190-194.	6.0	66
58	A Novel Bacterium-Free Method for Generation of Flavivirus Infectious DNA by Circular Polymerase Extension Reaction Allows Accurate Recapitulation of Viral Heterogeneity. Journal of Virology, 2013, 87, 2367-2372.	1.5	65
59	Cell fusing agent virus and dengue virus mutually interact in Aedes aegypti cell lines. Scientific Reports, 2017, 7, 6935.	1.6	63
60	Single-round infectious particles enhance immunogenicity of a DNA vaccine against West Nile virus. Nature Biotechnology, 2008, 26, 571-577.	9.4	62
61	Viral RNA Intermediates as Targets for Detection and Discovery of Novel and Emerging Mosquito-Borne Viruses. PLoS Neglected Tropical Diseases, 2015, 9, e0003629.	1.3	62
62	Synthetic Heparan Sulfate Mimetic Pixatimod (PG545) Potently Inhibits SARS-CoV-2 by Disrupting the Spike–ACE2 Interaction. ACS Central Science, 2022, 8, 527-545.	5.3	62
63	Loss of Dimerisation of the Nonstructural Protein NS1 of Kunjin Virus Delays Viral Replication and Reduces Virulence in Mice, but Still Allows Secretion of NS1. Virology, 1999, 264, 66-75.	1.1	60
64	Human MicroRNA miR-532-5p Exhibits Antiviral Activity against West Nile Virus via Suppression of Host Genes SESTD1 and TAB3 Required for Virus Replication. Journal of Virology, 2016, 90, 2388-2402.	1.5	60
65	Using a bioaerosol personal sampler in combination with real-time PCR analysis for rapid detection of airborne viruses. Environmental Microbiology, 2007, 9, 992-1000.	1.8	58
66	Biological Significance of Glycosylation of the Envelope Protein of Kunjin Virus. Annals of the New York Academy of Sciences, 2001, 951, 361-363.	1.8	57
67	The Naturally Attenuated Kunjin Strain of West Nile Virus Shows Enhanced Sensitivity to the Host Type I Interferon Response. Journal of Virology, 2011, 85, 5664-5668.	1.5	55
68	West Nile virus vaccines. Expert Opinion on Biological Therapy, 2004, 4, 1295-1305.	1.4	52
69	West Nile virus-induced cytoplasmic membrane structures provide partial protection against the interferon-induced antiviral MxA protein. Journal of General Virology, 2007, 88, 3013-3017.	1.3	51
70	Characterization of Recombinant Flaviviridae Viruses Possessing a Small Reporter Tag. Journal of Virology, 2018, 92, .	1.5	51
71	Determinants of Zika virus host tropism uncovered by deep mutational scanning. Nature Microbiology, 2019, 4, 876-887.	5.9	50
72	Zika virus noncoding RNA suppresses apoptosis and is required for virus transmission by mosquitoes. Nature Communications, 2020, 11, 2205.	5.8	50

#	Article	IF	CITATIONS
73	<i>De Novo</i> Generation and Characterization of New Zika Virus Isolate Using Sequence Data from a Microcephaly Case. MSphere, 2017, 2, .	1.3	47
74	Kunjin Virus Replicon Vectors for Human Immunodeficiency Virus Vaccine Development. Journal of Virology, 2003, 77, 7796-7803.	1,5	45
75	Preclinical development of a molecular clampâ€stabilised subunit vaccine for severe acute respiratory syndrome coronavirus 2. Clinical and Translational Immunology, 2021, 10, e1269.	1.7	45
76	Virulence determinants between New York 99 and Kunjin strains of West Nile virus. Virology, 2011, 414, 63-73.	1.1	44
77	Potent neutralization of clinical isolates of SARS-CoV-2 D614 and G614 variants by a monomeric, sub-nanomolar affinity nanobody. Scientific Reports, 2021, 11, 3318.	1.6	43
78	Stable Expression of Noncytopathic Kunjin Replicons Simulates Both Ultrastructural and Biochemical Characteristics Observed during Replication of Kunjin Virus. Virology, 2001, 279, 161-172.	1.1	41
79	An Optimized High-Throughput Immuno-Plaque Assay for SARS-CoV-2. Frontiers in Microbiology, 2021, 12, 625136.	1.5	41
80	Infectious DNAs derived from insect-specific flavivirus genomes enable identification of pre- and post-entry host restrictions in vertebrate cells. Scientific Reports, 2017, 7, 2940.	1.6	40
81	No evidence of human genome integration of SARS-CoV-2 found by long-read DNA sequencing. Cell Reports, 2021, 36, 109530.	2.9	39
82	A Kunjin Replicon Virus-like Particle Vaccine Provides Protection Against Ebola Virus Infection in Nonhuman Primates. Journal of Infectious Diseases, 2015, 212, S368-S371.	1.9	38
83	Recombinant Kunjin virus replicon vaccines induce protective T-cell immunity against human papillomavirus 16 E7-expressing tumour. Virology, 2004, 319, 237-248.	1.1	37
84	Kunjin Virus Replicon-Based Vaccines Expressing Ebola Virus Glycoprotein GP Protect the Guinea Pig Against Lethal Ebola Virus Infection. Journal of Infectious Diseases, 2011, 204, S1060-S1065.	1.9	35
85	West Nile virus NS2A protein facilitates virus-induced apoptosis independently of interferon response. Journal of General Virology, 2013, 94, 308-313.	1.3	35
86	Programmed Ribosomal Frameshift Alters Expression of West Nile Virus Genes and Facilitates Virus Replication in Birds and Mosquitoes. PLoS Pathogens, 2014, 10, e1004447.	2.1	33
87	A Kunjin replicon vector encoding granulocyte macrophage colony-stimulating factor for intra-tumoral gene therapy. Gene Therapy, 2009, 16, 190-199.	2.3	32
88	Translation of the Flavivirus Kunjin NS3 Gene in cis but Not Its RNA Sequence or Secondary Structure Is Essential for Efficient RNA Packaging. Journal of Virology, 2006, 80, 11255-11264.	1.5	31
89	Antigenic Characterization of New Lineage II Insect-Specific Flaviviruses in Australian Mosquitoes and Identification of Host Restriction Factors. MSphere, 2020, 5, .	1.3	31
90	Complete protection by a single-dose skin patch–delivered SARS-CoV-2 spike vaccine. Science Advances, 2021, 7, eabj8065.	4.7	31

#	Article	IF	CITATIONS
91	Systematic analysis of viral genes responsible for differential virulence between American and Australian West Nile virus strains. Journal of General Virology, 2015, 96, 1297-1308.	1.3	28
92	Viral determinants in the NS3 helicase and 2K peptide that promote West Nile virus resistance to antiviral action of 2′,5′-oligoadenylate synthetase 1b. Virology, 2010, 399, 176-185.	1.1	27
93	Virulence and Evolution of West Nile Virus, Australia, 1960–2012. Emerging Infectious Diseases, 2016, 22, 1353-1362.	2.0	26
94	The in vitro and in vivo antiviral properties of combined monoterpene alcohols against West Nile virus infection. Virology, 2016, 495, 18-32.	1.1	24
95	West Nile virus infection and interferon alpha treatment alter the spectrum and the levels of coding and noncoding host RNAs secreted in extracellular vesicles. BMC Genomics, 2019, 20, 474.	1.2	23
96	Expression and purification of the seven nonstructural proteins of the flavivirus Kunjin in the E. coli and the baculovirus expression systems. Journal of Virological Methods, 1996, 61, 47-58.	1.0	22
97	Assessing the potential of unmanned aerial vehicle spraying of aqueous ozone as an outdoor disinfectant for SARS-CoV-2. Environmental Research, 2021, 196, 110944.	3.7	22
98	Evaluation of recombinant Kunjin replicon SIV vaccines for protective efficacy in macaques. Virology, 2008, 374, 528-534.	1.1	21
99	Monoclonal antibodies to the West Nile virus NS5 protein map to linear and conformational epitopes in the methyltransferase and polymerase domains. Journal of General Virology, 2009, 90, 2912-2922.	1.3	20
100	Determinants of attenuation in the envelope protein of the flavivirus Alfuy. Journal of General Virology, 2011, 92, 2286-2296.	1.3	20
101	The West Nile virus assembly process evades the conserved antiviral mechanism of the interferon-induced MxA protein. Virology, 2014, 448, 104-116.	1.1	20
102	Comparison of attenuated and virulent West Nile virus strains in human monocyte-derived dendritic cells as a model of initial human infection. Virology Journal, 2015, 12, 46.	1.4	20
103	NS1′ Colocalizes with NS1 and Can Substitute for NS1 in West Nile Virus Replication. Journal of Virology, 2013, 87, 9384-9390.	1.5	19
104	Chimeric viruses of the insect-specific flavivirus Palm Creek with structural proteins of vertebrate-infecting flaviviruses identify barriers to replication of insect-specific flaviviruses in vertebrate cells. Journal of General Virology, 2019, 100, 1580-1586.	1.3	19
105	Cloning and Expression of the Ataxia–Telangiectasia Gene in Baculovirus. Biochemical and Biophysical Research Communications, 1998, 245, 144-148.	1.0	18
106	Neuroinvasiveness of the MR766 strain of Zika virus in IFNAR-/-Âmice maps to prM residues conserved amongst African genotype viruses. PLoS Pathogens, 2021, 17, e1009788.	2.1	18
107	Kunjin replicon-based simian immunodeficiency virus gag vaccines. Vaccine, 2008, 26, 3268-3276.	1.7	17
108	Identification of residues in West Nile virus pre-membrane protein that influence viral particle secretion and virulence. Journal of General Virology, 2012, 93, 1965-1975.	1.3	17

#	Article	IF	CITATIONS
109	An interaction between the methyltransferase and RNA dependent RNA polymerase domains of the West Nile virus NS5 protein. Journal of General Virology, 2013, 94, 1961-1971.	1.3	17
110	Construction and biological characterization of artificial recombinants between a wild type flavivirus (Kunjin) and a live chimeric flavivirus vaccine (ChimeriVax-JE). Vaccine, 2007, 25, 6661-6671.	1.7	15
111	Fetal Brain Infection Is Not a Unique Characteristic of Brazilian Zika Viruses. Viruses, 2018, 10, 541.	1.5	15
112	Successful post-exposure prophylaxis of Ebola infected non-human primates using Ebola glycoprotein-specific equine IgG. Scientific Reports, 2017, 7, 41537.	1.6	14
113	pDNA-lipoplexes engrafted with flagellin-related peptide induce potent immunity and anti-tumour effects. Vaccine, 2011, 29, 6911-6919.	1.7	13
114	Chimeric viruses between Rocio and West Nile: the role for Rocio prM-E proteins in virulence and inhibition of interferon-1±/l² signaling. Scientific Reports, 2017, 7, 44642.	1.6	13
115	Helicase Domain of West Nile Virus NS3 Protein Plays a Role in Inhibition of Type I Interferon Signalling. Viruses, 2017, 9, 326.	1.5	13
116	Ilheus and Saint Louis encephalitis viruses elicit cross-protection against a lethal Rocio virus challenge in mice. PLoS ONE, 2018, 13, e0199071.	1.1	13
117	Structural analysis of 3'UTRs in insect flaviviruses reveals novel determinants of sfRNA biogenesis and provides new insights into flavivirus evolution. Nature Communications, 2022, 13, 1279.	5.8	13
118	Increased expression of capsid protein in trans enhances production of single-round infectious particles by West Nile virus DNA vaccine candidate. Journal of General Virology, 2014, 95, 2176-2191.	1.3	11
119	Semliki Forest virus and Kunjin virus RNA replicons elicit comparable cellular immunity but distinct humoral immunity. Vaccine, 2005, 23, 4189-4194.	1.7	10
120	Full genome sequence of Rocio virus reveal substantial variations from the prototype Rocio virus SPH 34675 sequence. Archives of Virology, 2018, 163, 255-258.	0.9	10
121	Sequencing of Historical Isolates, K-mer Mining and High Serological Cross-Reactivity with Ross River Virus Argue against the Presence of Getah Virus in Australia. Pathogens, 2020, 9, 848.	1.2	10
122	Immunization with recombinant vaccinia viruses expressing structural and part of the nonstructural region of tick-borne encephalitis virus cDNA protect mice against lethal encephalitis. Journal of Biotechnology, 1996, 44, 97-103.	1.9	9
123	ChimeriVax-West Nile vaccine. Current Opinion in Molecular Therapeutics, 2007, 9, 498-504.	2.8	9
124	Last 20 aa of the West Nile virus NS1′ protein are responsible for its retention in cells and the formation of unique heat-stable dimers. Journal of General Virology, 2015, 96, 1042-1054.	1.3	8
125	Genetic characterization of Cacipacoré virus from ticks collected in São Paulo State, Brazil. Archives of Virology, 2017, 162, 1783-1786.	0.9	8
126	CCR2 Plays a Protective Role in Rocio Virus–Induced Encephalitis by Promoting Macrophage Infiltration Into the Brain. Journal of Infectious Diseases, 2019, 219, 2015-2025.	1.9	8

#	Article	IF	CITATIONS
127	Dermal Delivery of a SARS-CoV-2 Subunit Vaccine Induces Immunogenicity against Variants of Concern. Vaccines, 2022, 10, 578.	2.1	7
128	Reporter Flaviviruses as Tools to Demonstrate Homologous and Heterologous Superinfection Exclusion. Viruses, 2022, 14, 1501.	1.5	7
129	West Nile Virus Genome with Glycosylated Envelope Protein and Deletion of Alpha Helices 1, 2, and 4 in the Capsid Protein Is Noninfectious and Efficiently Secretes Subviral Particles. Journal of Virology, 2013, 87, 13063-13069.	1.5	6
130	Internal Ribosome Entry Site-Based Attenuation of a Flavivirus Candidate Vaccine and Evaluation of the Effect of Beta Interferon Coexpression on Vaccine Properties. Journal of Virology, 2014, 88, 2056-2070.	1.5	6
131	Mutational analysis of Aedes aegypti Dicer 2 provides insights into the biogenesis of antiviral exogenous small interfering RNAs. PLoS Pathogens, 2022, 18, e1010202.	2.1	6
132	Preliminary crystallographic characterization of an RNA helicase from Kunjin virus. Acta Crystallographica Section F: Structural Biology Communications, 2006, 62, 876-879.	0.7	5
133	Differential Diagnosis of Flavivirus Infections in Horses Using Viral Envelope Protein Domain III Antigens in Enzyme-Linked Immunosorbent Assay. Vector-Borne and Zoonotic Diseases, 2017, 17, 825-835.	0.6	5
134	A paucigranulocytic asthma host environment promotes the emergence of virulent influenza viral variants. ELife, 2021, 10, .	2.8	5
135	Detection and Quantification of SARS-CoV-2 Receptor Binding Domain Neutralization by a Sensitive Competitive ELISA Assay. Vaccines, 2021, 9, 1493.	2.1	5
136	Primeâ€boost vaccinations using recombinant flavivirus replicon and vaccinia virus vaccines: an ELISPOT analysis. Immunology and Cell Biology, 2011, 89, 426-436.	1.0	4
137	Nucleic Acid-Based Infectious and Pseudo-Infectious Flavivirus Vaccines. , 2011, , 299-320.		4
138	Peptide-Based Vaccine against SARS-CoV-2: Peptide Antigen Discovery and Screening of Adjuvant Systems. Pharmaceutics, 2022, 14, 856.	2.0	4
139	The distinguishing NS5-M114V mutation in American Zika virus isolates has negligible impacts on virus replication and transmission potential. PLoS Neglected Tropical Diseases, 2022, 16, e0010426.	1.3	4
140	Generation of CTL responses using Kunjin replicon RNA. Immunology and Cell Biology, 2003, 81, 73-78.	1.0	3
141	The I22V and L72S substitutions in West Nile virus prM protein promote enhanced prM/E heterodimerisation and nucleocapsid incorporation. Virology Journal, 2015, 12, 72.	1.4	3
142	Contemporary Anti-Ebola Drug Discovery Approaches and Platforms. ACS Infectious Diseases, 2019, 5, 35-48.	1.8	3
143	A 1958 Isolate of Kedougou Virus (KEDV) from Ndumu, South Africa, Expands the Geographic and Temporal Range of KEDV in Africa. Viruses, 2021, 13, 1368.	1.5	2
144	Generating flavivirus vaccine candidates by modulating interferon sensitivity. Expert Review of Vaccines, 2009, 8, 1157-1160.	2.0	1

#	Article	IF	CITATIONS
145	Loop de loop: viral RNA evades IFIT1 targeting. Trends in Microbiology, 2014, 22, 171-173.	3.5	1
146	Vaccine delivery: Nanopatch-Targeted Skin Vaccination against West Nile Virus and Chikungunya Virus in Mice (Small 16/2010). Small, 2010, 6, n/a-n/a.	5.2	0
147	Zika Virus sfRNA Plays an Essential Role in the Infection of Insects and Mammals. Proceedings (mdpi), 2020, 50, .	0.2	Ο
148	Vaccine Development Against West Nile Virus. , 2009, , 427-451.		0
149	West Nile Virus Infection and Interferon Alpha Treatment Induce Incorporation of Common and Unique Host Antiviral RNAs Into Extracellular Vesicles. SSRN Electronic Journal, 0, , .	0.4	0