Apollinaire Tsopmo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5775473/publications.pdf

Version: 2024-02-01

81 papers 2,506 citations

28 h-index 223531 46 g-index

90 all docs

90 docs citations

90 times ranked 2896 citing authors

#	Article	IF	CITATIONS
1	Inhibition of lowâ€density lipoprotein oxidation, antioxidative and bile acidâ€binding capacities of hydrolyzed proteins from carbohydraseâ€treated oat bran. Journal of Food Biochemistry, 2022, 46, e13675.	1.2	2
2	Antioxidant, pancreatic lipase, and αâ€amylase inhibitory properties of oat bran hydrolyzed proteins and peptides. Journal of Food Biochemistry, 2022, 46, e13762.	1.2	30
3	Synthesis, characterization and antimicrobial properties of two derivatives of pyrrolidine-2,5-dione fused at positions-3,4 to a dibenzobarrelene backbone. BMC Chemistry, 2022, 16, 8.	1.6	2
4	Antioxidants in functional foods. Journal of Food Biochemistry, 2022, 46, e14167.	1.2	0
5	Antibiotics threats on vegetables and the perils of low income nations practices. Sustainable Chemistry and Pharmacy, 2021, 21, 100448.	1.6	4
6	Angiotensin-I converting enzyme inhibitory activity of Amaranthus hypochondriacus seed protein hydrolysates produced with lactic bacteria and their peptidomic profiles. Food Chemistry, 2021, 363, 130320.	4.2	13
7	Effect of Syzigium aromaticum and Allium sativum spice extract powders on the lipid quality of groundnuts (Arachis hypogaea) pudding during steam cooking. Heliyon, 2020, 6, e05166.	1.4	5
8	Characterization of Amaranthus hypochondriacus seed protein fractions, and their antioxidant activity after hydrolysis with lactic acid bacteria. Journal of Cereal Science, 2020, 95, 103075.	1.8	20
9	Chromium and arsenic speciation analysis in meats by HPLC-ICP-MS in the presence of hydrolyzed oat proteins with radical scavenging activities. Heliyon, 2020, 6, e03654.	1.4	2
10	Antioxidant, Physicochemical, and Cellular Secretion of Glucagon-Like Peptide-1 Properties of Oat Bran Protein Hydrolysates. Antioxidants, 2020, 9, 557.	2.2	17
11	Germination as a bioprocess for enhancing the quality and nutritional prospects of legume proteins. Trends in Food Science and Technology, 2020, 101, 213-222.	7.8	102
12	Synthesis, characterization, antimicrobial activities and electrochemical behavior of new phenolic azo dyes from two thienocoumarin amines. Arkivoc, 2020, 2019, 416-430.	0.3	6
13	Bioprocessing of common pulses changed seed microstructures, and improved dipeptidyl peptidase-IV and α-glucosidase inhibitory activities. Scientific Reports, 2019, 9, 15308.	1.6	44
14	Occurrence, properties and biological significance of pyroglutamyl peptides derived from different food sources. Food Science and Human Wellness, 2019, 8, 268-274.	2.2	30
15	Antioxidant properties and potential mechanisms of hydrolyzed proteins and peptides from cereals. Heliyon, 2019, 5, e01538.	1.4	140
16	Antioxidant and Anti-Apoptotic Properties of Oat Bran Protein Hydrolysates in Stressed Hepatic Cells. Foods, 2019, 8, 160.	1.9	16
17	Research trends in food chemistry: A bibliometric review of its 40†years anniversary (1976†2016). Food Chemistry, 2019, 294, 448-457.	4.2	95
18	Possible involvement of transcriptional activation of nuclear factor erythroid 2-related factor 2 (Nrf2) in the protective effect of caffeic acid on paraquat-induced oxidative damage in Drosophila melanogaster. Pesticide Biochemistry and Physiology, 2019, 157, 161-168.	1.6	23

#	Article	IF	Citations
19	Physicochemical, antioxidant, calcium binding, and angiotensin converting enzyme inhibitory properties of hydrolyzed tomato seed proteins. Journal of Food Biochemistry, 2019, 43, e12721.	1.2	18
20	Peptidomic analysis of hydrolyzed oat bran proteins, and their in vitro antioxidant and metal chelating properties. Food Chemistry, 2019, 279, 49-57.	4.2	69
21	Reactivity of peptides within the food matrix. Journal of Food Biochemistry, 2019, 43, e12489.	1.2	39
22	Bioinformatics and peptidomics approaches to the discovery and analysis of food-derived bioactive peptides. Analytical and Bioanalytical Chemistry, 2018, 410, 3463-3472.	1.9	127
23	Structure-function relationships of hydroxyl radical scavenging and chromium-VI reducing cysteine-tripeptides derived from rye secalin. Food Chemistry, 2018, 254, 165-169.	4.2	43
24	Phenolic acids, avenanthramides, and antioxidant activity of oats defatted with hexane or supercritical fluid. Journal of Cereal Science, 2018, 79, 21-26.	1.8	24
25	Potential of Food Hydrolyzed Proteins and Peptides to Chelate Iron or Calcium and Enhance their Absorption. Foods, 2018, 7, 172.	1.9	109
26	Production of antioxidant peptide fractions from a by-product of tomato processing: mass spectrometry identification of peptides and stability to gastrointestinal digestion. Journal of Food Science and Technology, 2018, 55, 3498-3507.	1.4	15
27	Structural Characterization and Functional Properties of Proteins from Oat Milling Fractions. JAOCS, Journal of the American Oil Chemists' Society, 2018, 95, 991-1000.	0.8	23
28	Phytochemicals in Human Milk and Their Potential Antioxidative Protection. Antioxidants, 2018, 7, 32.	2.2	31
29	Physiological and molecular characterization of compost bacteria antagonistic to soil-borne plant pathogens. Canadian Journal of Microbiology, 2017, 63, 411-426.	0.8	34
30	Antioxidant and lipoxygenase activities of polyphenol extracts from oat brans treated with polysaccharide degrading enzymes. Heliyon, 2017, 3, e00351.	1.4	38
31	Inhibition of ADAM17/TACE activity by zinc-chelating rye secalin-derived tripeptides and analogues. RSC Advances, 2017, 7, 26361-26369.	1.7	20
32	Pepsin Digested Oat Bran Proteins: Separation, Antioxidant Activity, and Identification of New Peptides. Journal of Chemistry, 2016, 2016, 1-8.	0.9	29
33	Antioxidant Activity of Oat Proteins Derived Peptides in Stressed Hepatic HepG2 Cells. Antioxidants, 2016, 5, 39.	2.2	55
34	Identification of peptides, metal binding and lipid peroxidation activities of HPLC fractions of hydrolyzed oat bran proteins. Journal of Food Science and Technology, 2016, 53, 3593-3601.	1.4	29
35	Ericoside, a new antibacterial biflavonoid from Erica mannii (Ericaceae). Fìtoterapìâ, 2016, 109, 206-211.	1.1	18
36	A Novel Ellagic Acid Derivative from Desbordesia glaucescens. Natural Product Communications, 2015, 10, 1934578X1501001.	0.2	4

#	Article	IF	Citations
37	Processing Oats and Bioactive Components. , 2015, , 361-368.		5
38	Antioxidant activity, avenanthramide and phenolic acid contents of oat milling fractions. Journal of Cereal Science, 2015, 63, 35-40.	1.8	70
39	Lemairones A and B: Two new antibacterial tetraflavonoids from the leaves of Zanthoxylum lemairei (Rutaceae). Phytochemistry Letters, 2015, 14, 1-7.	0.6	23
40	Reduction of hexavalent chromium by digested oat bran proteins. Food Chemistry, 2014, 153, 171-176.	4.2	11
41	Treatment of oat bran with carbohydrases increases soluble phenolic acid content and influences antioxidant and antimicrobial activities. Food Research International, 2013, 52, 568-574.	2.9	55
42	Effect of Addition of Oat Bran Protein Hydrolysates on Vitamins A, C, E Levels and Protein Carbonyl in Mice on High-Fat Diet. Free Radical Biology and Medicine, 2013, 65, S110-S111.	1.3	0
43	Lignans and Stilbenes from African Medicinal Plants. , 2013, , 435-478.		16
44	Hexapeptides from human milk prevent the induction of oxidative stress from parenteral nutrition in the newborn guinea pig. Pediatric Research, 2012, 71, 675-681.	1.1	13
45	Production and Antimicrobial Activity of 3-Hydroxypropionaldehyde from Bacillus subtilis Strain CU12. Journal of Chemical Ecology, 2012, 38, 1521-1527.	0.9	37
46	Use of carbohydrase to enhance protein extraction efficiency and antioxidative properties of oat bran protein hydrolysates. Food Research International, 2012, 46, 69-75.	2.9	57
47	Role of carbohydrases on the release of reducing sugar, total phenolics and on antioxidant properties of oat bran. Food Chemistry, 2012, 132, 413-418.	4.2	67
48	Terpenoids constituents of Euphorbia sapinii. Phytochemistry Letters, 2011, 4, 218-221.	0.6	14
49	UV resonance Raman spectroscopy probes the amide Il′p band position in short breast milk peptides with antioxidant activity. Journal of Raman Spectroscopy, 2011, 42, 2105-2111.	1.2	3
50	Novel anti-oxidative peptides from enzymatic digestion of human milk. Food Chemistry, 2011, 126, 1138-1143.	4.2	71
51	Tryptophan from Human Milk Induces Oxidative Stress and Upregulates the Nrf-2–Mediated Stress Response in Human Intestinal Cell Lines. Journal of Nutrition, 2011, 141, 1417-1423.	1.3	19
52	Chemical Profiling of Lentil (Lens culinaris Medik.) Cultivars and Isolation of Compounds. Journal of Agricultural and Food Chemistry, 2010, 58, 8715-8721.	2.4	37
53	Effects of Human Milk Peptides on Lipid Peroxides, Free Radicals and Quality of Milk. Free Radical Biology and Medicine, 2010, 49, S202.	1.3	1
54	Chemical constituents from the bark of Anisopus mannii. Canadian Journal of Chemistry, 2009, 87, 397-400.	0.6	7

#	Article	IF	CITATIONS
55	Tryptophan Released From Mother's Milk Has Antioxidant Properties. Pediatric Research, 2009, 66, 614-618.	1.1	80
56	Evaluation of antioxidant capacity and aroma quality of breast milk. Nutrition, 2009, 25, 105-114.	1.1	69
57	Long-term impact of an antioxidant-deficient neonatal diet on lipid and glucose metabolism. Free Radical Biology and Medicine, 2009, 47, 275-282.	1.3	14
58	Influence of lung oxidant and antioxidant status on alveolarization: Role of light-exposed total parenteral nutrition. Free Radical Biology and Medicine, 2008, 45, 572-577.	1.3	31
59	Human Milk has Anti-Oxidant Properties to Protect Premature Infants. Current Pediatric Reviews, 2007, 3, 45-51.	0.4	19
60	Proanthocyanidin Profile and ORAC Values of Manitoba Berries, Chokecherries, and Seabuckthorn. Journal of Agricultural and Food Chemistry, 2007, 55, 6970-6976.	2.4	47
61	Impact of iron and vitamin C-containing supplements on preterm human milk: In vitro. Free Radical Biology and Medicine, 2007, 42, 1591-1598.	1.3	21
62	Shielding parenteral multivitamins from light increases vitamin A and E concentration in lung of newborn guinea pigs. Clinical Nutrition, 2007, 26, 341-347.	2.3	21
63	Antioxidant components of human milk. FASEB Journal, 2006, 20, .	0.2	0
64	4,5-Epoxide-1,6-dimethyl-1-vinylhexyl <i>p</i>-coumarate: A novel monoterpene derivative from <i>Cleistopholis patens</i> . Bulletin of the Chemical Society of Ethiopia, 2004, 17, .	0.5	0
65	Two labdane diterpenoids and a seco-tetranortriterpenoid from Turreanthus africanus. Phytochemistry, 2004, 65, 3083-3087.	1.4	35
66	Diterpenoids from Neoboutonia glabrescens (Euphorbiaceae). Phytochemistry, 2003, 64, 575-581.	1.4	25
67	Trypanocidal Diarylheptanoids fromAframomum letestuianum. Journal of Natural Products, 2003, 66, 364-367.	1.5	30
68	A Novel Natural Product Compound Enhances cAMP-Regulated Chloride Conductance of Cells Expressing CFTRî"F508. Molecular Medicine, 2002, 8, 75-87.	1.9	27
69	A norbislabdane and other labdanes from Aframomum sulcatum. Tetrahedron, 2002, 58, 2725-2728.	1.0	11
70	Vernoguinosterol and vernoguinoside, trypanocidal stigmastane derivatives from Vernonia guineensis (Asteraceae). Phytochemistry, 2002, 59, 371-374.	1.4	42
71	Three labdane diterpenoids from Aframomum sceptrum (Zingiberaceae). Phytochemistry, 2002, 60, 197-200.	1.4	16
72	A novel natural product compound enhances cAMP-regulated chloride conductance of cells expressing CFTR[delta]F508. Molecular Medicine, 2002, 8, 75-87.	1.9	9

Apollinaire Tsopmo

#	Article	IF	CITATIONS
73	Diarylheptanoids from Myrica arborea. Phytochemistry, 2000, 54, 975-978.	1.4	28
74	Anti-plasmodial sesquiterpenoids from the African Reneilmia cincinnata. Phytochemistry, 1999, 52, 1095-1099.	1.4	53
75	A New Dielsâ^Alder-Type Adduct Flavonoid from Dorstenia barteri. Journal of Natural Products, 1999, 62, 1432-1434.	1.5	20
76	Urea Derivatives from Pentadiplandra brazzeana. Journal of Natural Products, 1999, 62, 1435-1436.	1.5	37
77	Geranylated flavonoids from Dorstenia poinsettifolia. Phytochemistry, 1998, 48, 345-348.	1.4	26
78	New friedelane triterpenes from Lepidobotrys staudtii. Tetrahedron, 1996, 52, 14989-14994.	1.0	10
79	3-Acetoxy-5,7-Dihydroxy-4-Methoxyflavanone, A New Cytotoxic Dihydroflavonol from <i>Aframomum Hanburyi</i> K. Schum. Natural Product Research, 1996, 9, 33-37.	0.4	14
80	Hosloppin, a New Pyrone-Substituted Flavonoid from Hoslundia opposita. Journal of Natural Products, 1995, 58, 109-111.	1.5	17
81	Antimicrobial efficacy of cinnamon, ginger, horseradish and nutmeg extracts against spoilage pathogens. Phytoprotection, 0, 90, 65-70.	0.3	18