
Frank Plastria

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/577534/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Using the power of ideal solutions: simple proofs of some old and new results in location theory. 4or, 2021, 19, 449-467.	1.0	3
2	On the Structure of the Weakly Efficient Set for Quasiconvex Vector Minimization. Journal of Optimization Theory and Applications, 2020, 184, 547-564.	0.8	3
3	Pasting gauges II: Balls in pasted halfplanes. Discrete Applied Mathematics, 2019, 256, 138-156.	0.5	1
4	Pasting gauges I: Shortest paths across a hyperplane. Discrete Applied Mathematics, 2019, 256, 105-137.	0.5	5
5	Up- and downgrading the euclidean 1-median problem and knapsack Voronoi diagrams. Annals of Operations Research, 2016, 246, 227-251.	2.6	5
6	How bad can the centroid be?. European Journal of Operational Research, 2016, 252, 98-102.	3.5	5
7	Multidimensional Theoretic Consensus Reachability: The Impact of Distance Selection and Issue Saliences. Group Decision and Negotiation, 2015, 24, 1-44.	2.0	8
8	Location of weighted anti-ordered median straight lines with Euclidean distances. Discrete Applied Mathematics, 2015, 182, 122-133.	0.5	2
9	Multi-instance classification through spherical separation and VNS. Computers and Operations Research, 2014, 52, 326-333.	2.4	11
10	Location-arc routing problem: Heuristic approaches and test instances. Computers and Operations Research, 2014, 43, 309-317.	2.4	32
11	Linear separation and approximation by minimizing the sum of concave functions of distances. 4or, 2014, 12, 77-85.	1.0	2
12	Single-facility huff location problems on networks. Annals of Operations Research, 2014, 222, 175-195.	2.6	6
13	Continuous location of an assembly station. Top, 2013, 21, 323-340.	1.1	3
14	The ordered anti-median problem with distances derived from a strictly convex norm. Discrete Applied Mathematics, 2013, 161, 642-649.	0.5	0
15	Locating a semi-obnoxious covering facility with repelling polygonal regions. Discrete Applied Mathematics, 2013, 161, 2604-2623.	0.5	16
16	Minmax-distance approximation and separation problems: geometrical properties. Mathematical Programming, 2012, 132, 153-177.	1.6	6
17	Locating fire stations: An integrated approach for Belgium. Socio-Economic Planning Sciences, 2012, 46, 173-182.	2.5	69
18	The Weiszfeld Algorithm: Proof, Amendments, and Extensions. Profiles in Operations Research, 2011, , 357-389	0.3	26

FRANK PLASTRIA

#	Article	IF	CITATIONS
19	Finding an Euclidean anti-k-centrum location of a set of points. Computers and Operations Research, 2010, 37, 292-301.	2.4	7
20	Alternating local search based VNS for linear classification. Annals of Operations Research, 2010, 174, 121-134.	2.6	7
21	Eleven surveys in operations research: II. Annals of Operations Research, 2010, 175, 3-8.	2.6	7
22	Comments on: Routing problems with loading constraints. Top, 2010, 18, 34-35.	1.1	0
23	The k-Centrum Straight-line Location Problem. Mathematical Modelling and Algorithms, 2010, 9, 1-17.	0.5	6
24	Multi-dimensional Data Inspection for Supervised Classification with Eigen Transformation Classification Trees. Lecture Notes in Computer Science, 2010, , 583-588.	1.0	0
25	No 7-year itch at 4OR. 4or, 2009, 7, 1-15.	1.0	5
26	Plagiarism again: Sreenivas and Srinivas, with an update on Marcu. 4or, 2009, 7, 17-20.	1.0	10
27	Asymmetric distances, semidirected networks and majority in Fermat–Weber problems. Annals of Operations Research, 2009, 167, 121-155.	2.6	34
28	On the point for which the sum of the distances to n given points is minimum. Annals of Operations Research, 2009, 167, 7-41.	2.6	157
29	Maximal covering location problem with price decision for revenue maximization in a competitive environment. OR Spectrum, 2009, 31, 555-571.	2.1	18
30	On the impact of spatial pattern, aggregation, and model parameters in planar Huff-type competitive location and design problems. OR Spectrum, 2009, 31, 601-627.	2.1	10
31	Sequential versus simultaneous approach in the location and design of two new facilities using planar Huff-like models. Computers and Operations Research, 2009, 36, 1393-1405.	2.4	41
32	On the convergence of the Weiszfeld algorithm forÂcontinuous single facility location–allocation problems. Top, 2008, 16, 388-406.	1.1	16
33	Discrete models for competitive location with foresight. Computers and Operations Research, 2008, 35, 683-700.	2.4	99
34	Equity-Efficiency Bicriteria Location with Squared Euclidean Distances. Operations Research, 2008, 56, 79-87.	1.2	20
35	Optimal Expected-Distance Separating Halfspace. Mathematics of Operations Research, 2008, 33, 662-677.	0.8	10
36	Dimensionality Reduction for Classification. Lecture Notes in Computer Science, 2008, , 411-418.	1.0	22

FRANK PLASTRIA

#	Article	IF	CITATIONS
37	On the Selection of the Globally Optimal Prototype Subset for Nearest-Neighbor Classification. INFORMS Journal on Computing, 2007, 19, 470-479.	1.0	9
38	QUADRATIC ORDERED MEDIAN LOCATION PROBLEMS(<special issue="">the 50th Anniversary of the) Tj ETQq0 0 540-562.</special>	0 rgBT /Ov 0.3	verlock 10 Tf 5 9
39	Aggregation without Loss of Optimality in Competitive Location Models. Networks and Spatial Economics, 2007, 7, 3-18.	0.7	19
40	Planar Location and Design of a New Facility with Inner and Outer Competition: An Interval Lexicographical-like Solution Procedure. Networks and Spatial Economics, 2007, 7, 19-44.	0.7	41
41	Eleven surveys in Operations Research. Annals of Operations Research, 2007, 153, 3-7.	2.6	10
42	Solving a Huff-like competitive location and design model for profit maximization in the plane. European Journal of Operational Research, 2007, 179, 1274-1287.	3.5	112
43	Formulation Space Search for Circle Packing Problems. Lecture Notes in Computer Science, 2007, , 212-216.	1.0	18
44	Euclidean push–pull partial covering problems. Computers and Operations Research, 2006, 33, 3566-3582.	2.4	18
45	A case of plagiarism: DÄfnuÅ£ Marcu. 4or, 2006, 4, 11-13.	1.0	13
46	4OR: Year 4. 4or, 2006, 4, 1-9.	1.0	8
47	Four-point Fermat location problems revisited. New proofs and extensions of old results. IMA Journal of Management Mathematics, 2006, 17, 387-396.	1.1	12
48	AVOIDING CANNIBALISATION AND/OR COMPETITOR REACTION IN PLANAR SINGLE FACILITY LOCATION. Journal of the Operations Research Society of Japan, 2005, 48, 148-157.	0.3	21
49	Reformulation descent applied to circle packing problems. Computers and Operations Research, 2005, 32, 2419-2434.	2.4	78
50	Optimal location and design of a competitive facility. Mathematical Programming, 2004, 100, 247-265.	1.6	54
51	4OR for what purpose?. 4or, 2003, 1, 1.	1.0	8
52	Discrete location problems with push–pull objectives. Discrete Applied Mathematics, 2002, 123, 363-378.	0.5	36
53	Formulating logical implications in combinatorial optimisation. European Journal of Operational Research, 2002, 140, 338-353.	3.5	49
54	Continuous Covering Location Problems. , 2002, , 37-79.		40

FRANK PLASTRIA

#	Article	lF	CITATIONS
55	On the choice of aggregation points for continuousp-median problems: A case for the gravity centre. Top, 2001, 9, 217-242.	1.1	21
56	Static competitive facility location: An overview of optimisation approaches. European Journal of Operational Research, 2001, 129, 461-470.	3.5	265
57	Gauge Distances and Median Hyperplanes. Journal of Optimization Theory and Applications, 2001, 110, 173-182.	0.8	39
58	Dominators for Multiple-objective Quasiconvex Maximization Problems. Journal of Global Optimization, 2000, 18, 35-58.	1.1	9
59	Undesirable facility location with minimal covering objectives. European Journal of Operational Research, 1999, 119, 158-180.	3.5	42
60	Understanding Spatial Inertia: A Comment on Tellier and Vertefeuille. Journal of Regional Science, 1998, 38, 505-511.	2.1	1
61	Discretization results for the Huff and Pareto-Huff competitive location models on networks. Top, 1998, 6, 247-260.	1.1	26
62	Locating an Undesirable Facility by Generalized Cutting Planes. Mathematics of Operations Research, 1998, 23, 680-694.	0.8	12
63	Geometrical characterization of weakly efficient points. Journal of Optimization Theory and Applications, 1996, 90, 217-223.	0.8	16
64	A characterization of efficient points in constrained location problems with regional demand. Operations Research Letters, 1996, 19, 129-134.	0.5	10
65	The determination of a "least quantile of squares regression line―for all quantiles. Computational Statistics and Data Analysis, 1995, 20, 467-479.	0.7	9
66	When facilities coincide: Exact optimality conditions in multifacility location. Journal of Mathematical Analysis and Applications, 1992, 169, 476-498.	0.5	13
67	GBSSS: The generalized big square small square method for planar single-facility location. European Journal of Operational Research, 1992, 62, 163-174.	3.5	121
68	On destination optimality in asymmetric distance Fermat-Weber problems. Annals of Operations Research, 1992, 40, 355-369.	2.6	42
69	Solving general continuous single facility location problems by cutting planes. European Journal of Operational Research, 1987, 29, 98-110.	3.5	19
70	Two hierarchies associated with each clustering scheme. Pattern Recognition, 1986, 19, 193-196.	5.1	5
71	On the uniqueness of optimal solutions in continuous location theory. European Journal of Operational Research, 1985, 20, 327-331.	3.5	19
72	Non-hierarchical clustering with masloc. Pattern Recognition, 1983, 16, 507-516.	5.1	31

#	Article	IF	CITATIONS
73	A Note on "Fixed Point Optimality Criteria for the Location Problem with Arbitrary Norms― Journal of the Operational Research Society, 1983, 34, 164-164.	2.1	3
74	Segmented pseudometrics and four-point Fermat-Torricelli problems. Optimization, 0, , 1-19.	1.0	0