Pieter Vader

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5774413/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles, 2018, 7, 1535750.	5.5	6,961
2	Extracellular vesicle in vivo biodistribution is determined by cell source, route of administration and targeting. Journal of Extracellular Vesicles, 2015, 4, 26316.	5.5	1,077
3	Applying extracellular vesicles based therapeutics in clinical trials – an ISEV position paper. Journal of Extracellular Vesicles, 2015, 4, 30087.	5.5	1,020
4	Extracellular vesicles for drug delivery. Advanced Drug Delivery Reviews, 2016, 106, 148-156.	6.6	866
5	Cells release subpopulations of exosomes with distinct molecular and biological properties. Scientific Reports, 2016, 6, 22519.	1.6	728
6	Extracellular Vesicle Heterogeneity: Subpopulations, Isolation Techniques, and Diverse Functions in Cancer Progression. Frontiers in Immunology, 2018, 9, 738.	2.2	638
7	Extracellular vesicles as drug delivery systems: Why and how?. Advanced Drug Delivery Reviews, 2020, 159, 332-343.	6.6	606
8	Cellular stress conditions are reflected in the protein and RNA content of endothelial cellâ€derived exosomes. Journal of Extracellular Vesicles, 2012, 1, .	5.5	493
9	Ultrafiltration with size-exclusion liquid chromatography for high yield isolation of extracellular vesicles preserving intact biophysical and functional properties. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 879-883.	1.7	487
10	Electroporation-induced siRNA precipitation obscures the efficiency of siRNA loading into extracellular vesicles. Journal of Controlled Release, 2013, 172, 229-238.	4.8	457
11	Extracellular vesicle-based therapeutics: natural versus engineered targeting and trafficking. Experimental and Molecular Medicine, 2019, 51, 1-12.	3.2	426
12	PEGylated and targeted extracellular vesicles display enhanced cell specificity and circulation time. Journal of Controlled Release, 2016, 224, 77-85.	4.8	402
13	Extracellular vesicles as drug delivery systems: Lessons from the liposome field. Journal of Controlled Release, 2014, 195, 72-85.	4.8	372
14	Challenges and directions in studying cell–cell communication by extracellular vesicles. Nature Reviews Molecular Cell Biology, 2022, 23, 369-382.	16.1	365
15	Extracellular vesicles: emerging targets for cancer therapy. Trends in Molecular Medicine, 2014, 20, 385-393.	3.5	349
16	Microvesicles and exosomes: Opportunities for cell-derived membrane vesicles in drug delivery. Journal of Controlled Release, 2012, 161, 635-644.	4.8	347
17	Exosome mimetics: a novel class of drug delivery systems. International Journal of Nanomedicine, 2012, 7, 1525.	3.3	322
18	Cellular uptake of extracellular vesicles is mediated by clathrin-independent endocytosis and macropinocytosis. Journal of Controlled Release, 2017, 266, 100-108.	4.8	320

PIETER VADER

#	Article	IF	CITATIONS
19	Display of GPlâ€anchored antiâ€EGFR nanobodies on extracellular vesicles promotes tumour cell targeting. Journal of Extracellular Vesicles, 2016, 5, 31053.	5.5	284
20	Higher functionality of extracellular vesicles isolated using size-exclusion chromatography compared to ultracentrifugation. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 2061-2065.	1.7	268
21	Drug Delivery with Extracellular Vesicles: From Imagination to Innovation. Accounts of Chemical Research, 2019, 52, 1761-1770.	7.6	203
22	Biological membranes in EV biogenesis, stability, uptake, and cargo transfer: an ISEV position paper arising from the ISEV membranes and EVs workshop. Journal of Extracellular Vesicles, 2019, 8, 1684862.	5.5	177
23	Stateâ€ofâ€theâ€Art Design and Rapidâ€Mixing Production Techniques of Lipid Nanoparticles for Nucleic Acid Delivery. Small Methods, 2018, 2, 1700375.	4.6	165
24	Functional Delivery of Lipid-Conjugated siRNA by Extracellular Vesicles. Molecular Therapy, 2017, 25, 1580-1587.	3.7	145
25	Serumâ€free culture alters the quantity and protein composition of neuroblastomaâ€derived extracellular vesicles. Journal of Extracellular Vesicles, 2015, 4, 26883.	5.5	131
26	C9orf72 and RAB7L1 regulate vesicle trafficking in amyotrophic lateral sclerosis and frontotemporal dementia. Brain, 2017, 140, 887-897.	3.7	126
27	Recombinant phosphatidylserine-binding nanobodies for targeting of extracellular vesicles to tumor cells: a plug-and-play approach. Nanoscale, 2018, 10, 2413-2426.	2.8	110
28	Extracellular vesicles for nucleic acid delivery: progress and prospects for safe RNA-based gene therapy. Gene Therapy, 2017, 24, 157-166.	2.3	106
29	A CRISPR-Cas9-based reporter system for single-cell detection of extracellular vesicle-mediated functional transfer of RNA. Nature Communications, 2020, 11, 1113.	5.8	99
30	Extracellular Vesicle-Associated Proteins in Tissue Repair. Trends in Cell Biology, 2020, 30, 990-1013.	3.6	91
31	Identification of storage conditions stabilizing extracellular vesicles preparations. Journal of Extracellular Vesicles, 2022, 11, .	5.5	91
32	Approaches to surface engineering of extracellular vesicles. Advanced Drug Delivery Reviews, 2021, 173, 416-426.	6.6	87
33	Extracellular microRNAs are dynamic non-vesicular biomarkers of muscle turnover. Nucleic Acids Research, 2013, 41, 9500-9513.	6.5	83
34	Functional siRNA Delivery by Extracellular Vesicle–Liposome Hybrid Nanoparticles. Advanced Healthcare Materials, 2022, 11, e2101202.	3.9	77
35	Natural or Synthetic RNA Delivery: A Stoichiometric Comparison of Extracellular Vesicles and Synthetic Nanoparticles. Nano Letters, 2021, 21, 1888-1895.	4.5	76

 $_{36}$ Physicochemical and Biological Evaluation of siRNA Polyplexes Based on PEGylated Poly(amido) Tj ETQq0 0 0 rgBT $\frac{10}{1.7}$ erlock 10 Tf 50 62

PIETER VADER

#	Article	IF	CITATIONS
37	A call for the standardised reporting of factors affecting the exogenous loading of extracellular vesicles with therapeutic cargos. Advanced Drug Delivery Reviews, 2021, 173, 479-491.	6.6	68
38	Injectable Supramolecular Ureidopyrimidinone Hydrogels Provide Sustained Release of Extracellular Vesicle Therapeutics. Advanced Healthcare Materials, 2019, 8, e1900847.	3.9	61
39	Cardiac Progenitor Cell–Derived Extracellular Vesicles Reduce Infarct Size and Associate with Increased Cardiovascular Cell Proliferation. Journal of Cardiovascular Translational Research, 2019, 12, 5-17.	1.1	53
40	Optimization of poly(amido amine)s as vectors for siRNA delivery. Journal of Controlled Release, 2011, 150, 177-186.	4.8	47
41	Disulfide-Based Poly(amido amine)s for siRNA Delivery: Effects of Structure on siRNA Complexation, Cellular Uptake, Gene Silencing and Toxicity. Pharmaceutical Research, 2011, 28, 1013-1022.	1.7	47
42	Methods for the identification and characterization of extracellular vesicles in cardiovascular studies: from exosomes to microvesicles. Cardiovascular Research, 2023, 119, 45-63.	1.8	44
43	Interfering with endolysosomal trafficking enhances release of bioactive exosomes. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 20, 102014.	1.7	40
44	Extracellular Vesicles and Their Emerging Roles as Cellular Messengers in Endocrinology: An Endocrine Society Scientific Statement. Endocrine Reviews, 2022, 43, 441-468.	8.9	40
45	Biofabrication of Cell-Derived Nanovesicles: A Potential Alternative to Extracellular Vesicles for Regenerative Medicine. Cells, 2019, 8, 1509.	1.8	39
46	Examining the role of Rac1 in tumor angiogenesis and growth: a clinically relevant RNAi-mediated approach. Angiogenesis, 2011, 14, 457-466.	3.7	37
47	Targeted delivery of small interfering RNA to angiogenic endothelial cells with liposome-polycation-DNA particles. Journal of Controlled Release, 2012, 160, 211-216.	4.8	33
48	A method for quantifying cellular uptake of fluorescently labeled siRNA. Journal of Controlled Release, 2010, 148, 106-109.	4.8	32
49	Delivery of modified mRNA to damaged myocardium by systemic administration of lipid nanoparticles. Journal of Controlled Release, 2022, 343, 207-216.	4.8	30
50	Microbubbles-Assisted Ultrasound Triggers the Release of Extracellular Vesicles. International Journal of Molecular Sciences, 2017, 18, 1610.	1.8	29
51	Illuminating RNA trafficking and functional delivery by extracellular vesicles. Advanced Drug Delivery Reviews, 2021, 174, 250-264.	6.6	29
52	Ischaemia alters the effects of cardiomyocyteâ€derived extracellular vesicles on macrophage activation. Journal of Cellular and Molecular Medicine, 2019, 23, 1137-1151.	1.6	28
53	Polymeric Carrier Systems for siRNA Delivery. Current Topics in Medicinal Chemistry, 2012, 12, 108-119.	1.0	26
54	New considerations in the preparation of nucleic acid-loaded extracellular vesicles. Therapeutic Delivery, 2014, 5, 105-107.	1.2	23

PIETER VADER

#	Article	IF	CITATIONS
55	Taxol [®] -induced phosphatidylserine exposure and microvesicle formation in red blood cells is mediated by its vehicle Cremophor [®] EL. Nanomedicine, 2013, 8, 1127-1135.	1.7	22
56	Cetuximab treatment alters the content of extracellular vesicles released from tumor cells. Nanomedicine, 2016, 11, 881-890.	1.7	20
57	Isolation methods of large and small extracellular vesicles derived from cardiovascular progenitors: A comparative study. European Journal of Pharmaceutics and Biopharmaceutics, 2022, 170, 187-196.	2.0	20
58	Extracellular Vesicle-Based Hybrid Systems for Advanced Drug Delivery. Pharmaceutics, 2022, 14, 267.	2.0	20
59	Lipid-based Transfection Reagents Exhibit Cryo-induced Increase in Transfection Efficiency. Molecular Therapy - Nucleic Acids, 2016, 5, e290.	2.3	17
60	Cas9 RNP transfection by vapor nanobubble photoporation for exÂvivo cell engineering. Molecular Therapy - Nucleic Acids, 2021, 25, 696-707.	2.3	17
61	Probing the Membrane Interface-Interacting Proteome Using Photoactivatable Lipid Cross-Linkers. Journal of Proteome Research, 2007, 6, 1951-1962.	1.8	15
62	Tumour-bound RNA-laden exosomes. Nature Biomedical Engineering, 2017, 1, 634-636.	11.6	14
63	A post-insertion strategy for surface functionalization of bacterial and mammalian cell-derived extracellular vesicles. Biochimica Et Biophysica Acta - General Subjects, 2021, 1865, 129763.	1.1	13
64	Hydrogelâ€Induced Cell Membrane Disruptions Enable Direct Cytosolic Delivery of Membraneâ€Impermeable Cargo. Advanced Materials, 2021, 33, e2008054.	11.1	13
65	Profiling of Extracellular Small RNAs Highlights a Strong Bias towards Non-Vesicular Secretion. Cells, 2021, 10, 1543.	1.8	11
66	Intercalating quaternary nicotinamide-based poly(amido amine)s for gene delivery. Journal of Controlled Release, 2014, 195, 11-20.	4.8	9
67	Preparation and Isolation of siRNA-Loaded Extracellular Vesicles. Methods in Molecular Biology, 2017, 1545, 197-204.	0.4	6
68	ADDR editorial "Biologically-inspired drug delivery systems― Advanced Drug Delivery Reviews, 2016, 106, 1-2.	6.6	5
69	Interaction of Extracellular Vesicles with Endothelial Cells Under Physiological Flow Conditions. Methods in Molecular Biology, 2017, 1545, 205-213.	0.4	4
70	Normoxic Tumour Extracellular Vesicles Modulate the Response of Hypoxic Cancer and Stromal Cells to Doxorubicin In Vitro. International Journal of Molecular Sciences, 2020, 21, 5951.	1.8	3
71	Poly(amido amine) copolymers derived from aminobutanol and ethylene diamine are excellent carriers for siRNA delivery. Journal of Controlled Release, 2010, 148, e85-e86.	4.8	1
72	Lipid-Based Formulations for siRNA Delivery. , 0, , 291-304.		1