
Zai-Cheng Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5774118/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Compound Core–Shell Polymer Nanofibers by Co-Electrospinning. Advanced Materials, 2003, 15, 1929-1932.	21.0	1,076
2	Highly luminescent S, N co-doped graphene quantum dots with broad visible absorption bands for visible light photocatalysts. Nanoscale, 2013, 5, 12272.	5.6	1,018
3	Synthesis of Carbon Dots with Multiple Color Emission by Controlled Graphitization and Surface Functionalization. Advanced Materials, 2018, 30, 1704740.	21.0	778
4	Formation mechanism and optimization of highly luminescent N-doped graphene quantum dots. Scientific Reports, 2014, 4, 5294.	3.3	759
5	On–Off–On Fluorescent Carbon Dot Nanosensor for Recognition of Chromium(VI) and Ascorbic Acid Based on the Inner Filter Effect. ACS Applied Materials & Interfaces, 2013, 5, 13242-13247.	8.0	700
6	Oxygen Vacancy Enhanced Photocatalytic Activity of Pervoskite SrTiO ₃ . ACS Applied Materials & Interfaces, 2014, 6, 19184-19190.	8.0	608
7	Integrating Oxaliplatin with Highly Luminescent Carbon Dots: An Unprecedented Theranostic Agent for Personalized Medicine. Advanced Materials, 2014, 26, 3554-3560.	21.0	509
8	Fast Response and High Sensitivity Europium Metal Organic Framework Fluorescent Probe with Chelating Terpyridine Sites for Fe ³⁺ . ACS Applied Materials & Interfaces, 2013, 5, 1078-1083.	8.0	488
9	Self-Targeting Fluorescent Carbon Dots for Diagnosis of Brain Cancer Cells. ACS Nano, 2015, 9, 11455-11461.	14.6	439
10	A facile and versatile method for preparation of colored TiO ₂ with enhanced solar-driven photocatalytic activity. Nanoscale, 2014, 6, 10216-10223.	5.6	382
11	Red Emissive Sulfur, Nitrogen Codoped Carbon Dots and Their Application in Ion Detection and Theraonostics. ACS Applied Materials & Interfaces, 2017, 9, 18549-18556.	8.0	369
12	Tailoring color emissions from N-doped graphene quantum dots for bioimaging applications. Light: Science and Applications, 2015, 4, e364-e364.	16.6	366
13	Consciously Constructing Heterojunction or Direct Z-Scheme Photocatalysts by Regulating Electron Flow Direction. ACS Catalysis, 2018, 8, 2209-2217.	11.2	298
14	Three Colors Emission from S,N Coâ€doped Graphene Quantum Dots for Visible Light H ₂ Production and Bioimaging. Advanced Optical Materials, 2015, 3, 360-367.	7.3	276
15	Highly efficient p-type Cu3P/n-type g-C3N4 photocatalyst through Z-scheme charge transfer route. Applied Catalysis B: Environmental, 2019, 240, 253-261.	20.2	240
16	Magnetic iron oxide nanoparticles as <i>T</i> ₁ contrast agents for magnetic resonance imaging. Journal of Materials Chemistry C, 2018, 6, 1280-1290.	5.5	174
17	Surface Defects Enhanced Visible Light Photocatalytic H ₂ Production for Zn dâ€& Solid Solution. Small, 2016, 12, 793-801.	10.0	173
18	The formation mechanism and fluorophores of carbon dots synthesized <i>via</i> a bottom-up route. Materials Chemistry Frontiers, 2020, 4, 400-420.	5.9	166

#	Article	IF	CITATIONS
19	Effect of defects on photocatalytic activity of rutile TiO2 nanorods. Nano Research, 2015, 8, 4061-4071.	10.4	154
20	Operando chemistry of catalyst surfaces during catalysis. Chemical Society Reviews, 2017, 46, 2001-2027.	38.1	143
21	C–C Coupling on Single-Atom-Based Heterogeneous Catalyst. Journal of the American Chemical Society, 2018, 140, 954-962.	13.7	142
22	Peering into water splitting mechanism of g-C3N4-carbon dots metal-free photocatalyst. Applied Catalysis B: Environmental, 2018, 227, 418-424.	20.2	126
23	Enhanced photocatalytic N2 fixation via defective and fluoride modified TiO2 surface. Applied Catalysis B: Environmental, 2021, 282, 119580.	20.2	125
24	Templated Photocatalytic Synthesis of Well-Defined Platinum Hollow Nanostructures with Enhanced Catalytic Performance for Methanol Oxidation. Nano Letters, 2011, 11, 3759-3762.	9.1	119
25	Reduced TiO ₂ rutile nanorods with well-defined facets and their visible-light photocatalytic activity. Chemical Communications, 2014, 50, 2755-2757.	4.1	116
26	Free-standing nitrogen-doped carbon nanofiber films as highly efficient electrocatalysts for oxygen reduction. Nanoscale, 2013, 5, 9528.	5.6	111
27	Enhanced photocatalytic N2 fixation by promoting N2 adsorption with a co-catalyst. Science Bulletin, 2019, 64, 918-925.	9.0	109
28	Photocatalyst for Highâ€Performance H ₂ Production: Gaâ€Doped Polymeric Carbon Nitride. Angewandte Chemie - International Edition, 2021, 60, 6124-6129.	13.8	108
29	Self-Templating Construction of 3D Hierarchical Macro-/Mesoporous Silicon from 0D Silica Nanoparticles. ACS Nano, 2017, 11, 889-899.	14.6	100
30	Carbogenic nanodots derived from organo-templated zeolites with modulated full-color luminescence. Chemical Science, 2016, 7, 3564-3568.	7.4	99
31	Hierarchically Structured Porous Nitrogen-Doped Carbon for Highly Selective CO ₂ Capture. ACS Sustainable Chemistry and Engineering, 2016, 4, 298-304.	6.7	97
32	Interference Effect of Alcohol on Nessler's Reagent in Photocatalytic Nitrogen Fixation. ACS Sustainable Chemistry and Engineering, 2018, 6, 5342-5348.	6.7	96
33	Nanostructured Gold Architectures Formed through High Pressure-Driven Sintering of Spherical Nanoparticle Arrays. Journal of the American Chemical Society, 2010, 132, 12826-12828.	13.7	93
34	Defective g-C ₃ N ₄ Prepared by the NaBH ₄ Reduction for High-Performance H ₂ Production. ACS Sustainable Chemistry and Engineering, 2019, 7, 2343-2349.	6.7	87
35	Deliberate construction of direct <i>Z</i> -scheme photocatalysts through photodeposition. Journal of Materials Chemistry A, 2019, 7, 18348-18356.	10.3	85
36	Constructing bulk defective perovskite SrTiO ₃ nanocubes for high performance photocatalysts. Nanoscale, 2016, 8, 16963-16968.	5.6	82

#	Article	IF	CITATIONS
37	Self-floating nanostructured Ni–NiO _x /Ni foam for solar thermal water evaporation. Journal of Materials Chemistry A, 2019, 7, 8485-8490.	10.3	82
38	Organic-Inorganic Nanohybridization by Block Copolymer Thin Films. Advanced Functional Materials, 2005, 15, 1160-1164.	14.9	79
39	Pressureâ€Driven Assembly of Spherical Nanoparticles and Formation of 1Dâ€Nanostructure Arrays. Angewandte Chemie - International Edition, 2010, 49, 8431-8434.	13.8	78
40	Separately doped upconversion-C ₆₀ nanoplatform for NIR imaging-guided photodynamic therapy of cancer cells. Chemical Communications, 2013, 49, 3224-3226.	4.1	78
41	A highly active and durable iron/cobalt alloy catalyst encapsulated in N-doped graphitic carbon nanotubes for oxygen reduction reaction by a nanofibrous dicyandiamide template. Journal of Materials Chemistry A, 2018, 6, 5962-5970.	10.3	77
42	Porous One-Dimensional Nanostructures through Confined Cooperative Self-Assembly. Nano Letters, 2011, 11, 5196-5200.	9.1	76
43	Synthesis and Photoluminescence of Titania Nanoparticle Arrays Templated by Block-Copolymer Thin Films, ChemPhysChem, 2006, 7, 370,378 Measurement of the Transverse Single-Spin Asymmetry in < mml:math	2.1	75
44	xmIns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow><mml:msup><mml:mrow><mml:mi>p</mml:mi></mml:mrow><mml:mrow><mml stretchy="false">â†'</mml </mml:mrow></mml:msup><mml:mo>+</mml:mo><mml:mi>p</mml:mi>yx stretchy="false">â†'<mml:msup><mml:mrow><mml:mi>W</mml:mi></mml:mrow><mml:mrow><m< td=""><td>mo7.8</td><td>73 :</td></m<></mml:mrow></mml:msup></mml:mrow>	mo7.8	73 :
45	stretchy="false">/ <mml:msup><mml:mrow><mml:mi>Z</mml:mi></mml:mrow><mml. Vacanay-Enabled Mesoporous TiO₂ Modulated by Nickel Doping with Enhanced Photocatalytic Nitrogen Fixation Performance. ACS Sustainable Chemistry and Engineering, 2020, 8, 18258-18265.</mml. </mml:msup>	6.7	72
46	Fabrication, Formation Mechanism, and Magnetic Properties of Metal Oxide Nanotubes via Electrospinning and Thermal Treatment. Journal of Physical Chemistry C, 2011, 115, 373-378.	3.1	71
47	Technical design report for the \$overline{P}\$ ANDA (AntiProton Annihilations at Darmstadt) Straw Tube Tracker. European Physical Journal A, 2013, 49, 1.	2.5	71
48	Electrospun Cr-doped Bi ₄ Ti ₃ O ₁₂ /Bi ₂ Ti ₂ O ₇ heterostructure fibers with enhanced visible-light photocatalytic properties. Journal of Materials Chemistry A, 2015, 3, 6586-6591.	10.3	67
49	Phase control of hierarchically structured mesoporous anatase TiO2 microspheres covered with {001} facets. Journal of Materials Chemistry, 2012, 22, 21965.	6.7	66
50	Polyaniline as marine antifouling and corrosion-prevention agent. Synthetic Metals, 1999, 102, 1377-1380.	3.9	64
51	Catalytic oxidization polymerization of aniline in an H2O2?Fe2+ system. Journal of Applied Polymer Science, 1999, 72, 1077-1084.	2.6	63
52	Stable ZnO@TiO ₂ core/shell nanorod arrays with exposed high energy facets for self-cleaning coatings with anti-reflective properties. Journal of Materials Chemistry A, 2014, 2, 7313-7318.	10.3	63
53	Chemical polymerization of aniline with hydrogen peroxide as oxidant. Synthetic Metals, 1997, 84, 99-100.	3.9	62
54	Free-Standing, Patternable Nanoparticle/Polymer Monolayer Arrays Formed by Evaporation Induced Self-Assembly at a Fluid Interface, Journal of the American Chemical Society, 2008, 130, 3284-3285	13.7	61

#	Article	IF	CITATIONS
55	Structure defects assisted photocatalytic H2 production for polythiophene nanofibers. Applied Catalysis B: Environmental, 2017, 211, 98-105.	20.2	61
56	High-spin state Fe(III) doped TiO2 for electrocatalytic nitrogen fixation induced by surface F modification. Applied Catalysis B: Environmental, 2022, 301, 120809.	20.2	61
57	Water soluble polyaniline and its blend films prepared by aqueous solution casting. Polymer, 1999, 40, 5723-5727.	3.8	59
58	Enhancing photocatalytic performance by constructing ultrafine TiO2 nanorods/g-C3N4 nanosheets heterojunction for water treatment. Science Bulletin, 2018, 63, 683-690.	9.0	56
59	Recent advances of carbon dots as new antimicrobial agents. SmartMat, 2022, 3, 226-248.	10.7	56
60	Anchoring ultra-small TiO2 quantum dots onto ultra-thin and large-sized Mxene nanosheets for highly efficient photocatalytic water splitting. Ceramics International, 2021, 47, 21769-21776.	4.8	55
61	White Emissive Carbon Dots Actuated by the H-/J-Aggregates and Förster Resonance Energy Transfer. Journal of Physical Chemistry Letters, 2019, 10, 3849-3857.	4.6	53
62	Monodisperse Fluorescent Organic/Inorganic Composite Nanoparticles: Tuning Full Color Spectrum. Chemistry of Materials, 2012, 24, 3415-3419.	6.7	52
63	High-color-rendering flexible top-emitting warm-white organic light emitting diode with a transparent multilayer cathode. Organic Electronics, 2011, 12, 1137-1141.	2.6	51
64	Hydrogen-Bonding-Assisted Self-Assembly: Monodisperse Hollow Nanoparticles Made Easy. Journal of the American Chemical Society, 2009, 131, 13594-13595.	13.7	50
65	Ultra bright red AIE dots for cytoplasm and nuclear imaging. Polymer Chemistry, 2014, 5, 7013-7020.	3.9	50
66	Plasmonic Ag@Oxide Nanoprisms for Enhanced Performance of Organic Solar Cells. Small, 2015, 11, 2454-2462.	10.0	50
67	Effect on electrochemical reduction of nitrogen to ammonia under ambient conditions: Challenges and opportunities for chemical fuels. Journal of Energy Chemistry, 2021, 61, 304-318.	12.9	50
68	Boosting photocatalytic hydrogen production via enhanced exciton dissociation in black phosphorus quantum Dots/TiO2 heterojunction. Chemical Engineering Journal, 2022, 435, 135138.	12.7	49
69	Complete Oxidation of Methane on NiO Nanoclusters Supported on CeO ₂ Nanorods through Synergistic Effect. ACS Sustainable Chemistry and Engineering, 2018, 6, 6467-6477.	6.7	48
70	Beam Energy Dependence of the Third Harmonic of Azimuthal Correlations in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>Au</mml:mi><mml:mo>+</mml:mo><mml:mi>Auat RHIC. Physical Review Letters, 2016, 116, 112302.</mml:mi></mml:mrow></mml:math 	v> 7.8 v> <td>nath>Collisio</td>	nath>Collisio
71	The effect of solvent dielectric properties on the collection of oriented electrospun fibers. Journal of Applied Polymer Science, 2012, 125, 2585-2594.	2.6	44
72	Constructing creatinine-derived moiety as donor block for carbon nitride photocatalyst with extended absorption and spatial charge separation. Applied Catalysis B: Environmental, 2021, 291, 120099.	20.2	44

#	Article	IF	CITATIONS
73	Polymerization of aniline in an aqueous system containing organic solvents. Synthetic Metals, 1998, 96, 1-6.	3.9	43
74	Se & N co-doped carbon dots for high-performance fluorescence imaging agent of angiography. Journal of Materials Chemistry B, 2017, 5, 4988-4992.	5.8	43
75	A game-changing design of low-cost, large-size porous cocatalysts decorated by ultra-small photocatalysts for highly efficient hydrogen evolution. Applied Catalysis B: Environmental, 2021, 286, 119923.	20.2	43
76	Velocity Distribution of Vibration-driven Granular Gas in Knudsen Regime in Microgravity. Microgravity Science and Technology, 2008, 20, 73-80.	1.4	42
77	A Novel Perovskite SrTiO ₃ â€Ba ₂ FeNbO ₆ Solid Solution for Visible Light Photocatalytic Hydrogen Production. Advanced Energy Materials, 2017, 7, 1600932.	19.5	42
78	Plasma Hydrogenated TiO ₂ /Nickel Foam as an Efficient Bifunctional Electrocatalyst for Overall Water Splitting. ACS Sustainable Chemistry and Engineering, 2019, 7, 885-894.	6.7	40
79	Surface hydrophobic modification enhanced catalytic performance of electrochemical nitrogen reduction reaction. Nano Research, 2022, 15, 3886-3893.	10.4	40
80	Constructing CdS/Cd/doped TiO2 Z-scheme type visible light photocatalyst for H2 production. Science China Materials, 2018, 61, 851-860.	6.3	39
81	A metal-free carbon dots for wastewater treatment by visible light active photo-Fenton-like reaction in the broad pH range. Chinese Chemical Letters, 2021, 32, 2292-2296.	9.0	37
82	Designing large-sized cocatalysts for fast charge separation towards highly efficient visible-light-driven hydrogen evolution. International Journal of Hydrogen Energy, 2021, 46, 28545-28553.	7.1	37
83	Recent advance of carbon dots in bio-related applications. JPhys Materials, 2020, 3, 022003.	4.2	36
84	Photoluminescence: Synthesis of Carbon Dots with Multiple Color Emission by Controlled Graphitization and Surface Functionalization (Adv. Mater. 1/2018). Advanced Materials, 2018, 30, 1870002.	21.0	34
85	Water management by hierarchical structures for highly efficient solar water evaporation. Journal of Materials Chemistry A, 2021, 9, 7122-7128.	10.3	34
86	Synthesis of TiO2 nanoparticles in ultrathin block copolymer films—an integral geometry study. Physica A: Statistical Mechanics and Its Applications, 2004, 339, 80-85.	2.6	33
87	Recent progress on mitochondrial targeted cancer therapy based on inorganic nanomaterials. Materials Today Chemistry, 2019, 12, 240-260.	3.5	33
88	Monodisperse porous nanodiscs with fluorescent and crystalline wall structure. Chemical Communications, 2010, 46, 4941.	4.1	31
89	Feasibility studies of time-like proton electromagnetic form factors at \$overline{m P}\$ P Â ⁻ ANDA at FAIR. European Physical Journal A, 2016, 52, 1.	2.5	31
90	Boosting visible-light driven solar-fuel production over g-C3N4/tetra(4-carboxyphenyl)porphyrin iron(III) chloride hybrid photocatalyst via incorporation with carbon dots. Applied Catalysis B: Environmental, 2020, 265, 118595.	20.2	31

#	Article	IF	CITATIONS
91	A facile and general approach to polynary semiconductor nanocrystals via a modified two-phase method. Nanotechnology, 2011, 22, 245605.	2.6	30
92	Experimental access to Transition Distribution Amplitudes with the PÌ, ANDA experiment at FAIR. European Physical Journal A, 2015, 51, 1.	2.5	29
93	xmins:mmi= http://www.w3.org/1998/Math/Math/Math/Mit.> <mmi:mrow><mmi:mn>1</mmi:mn><mmi:msup><mm and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn>1</mml:mn><mml:msup><mm phases of <mml:math< td=""><td></td><td></td></mml:math<></mm </mml:msup></mml:mrow></mml:math </mm </mmi:msup></mmi:mrow>		
94	Photocatalytic reduction of Cr(<scp>vi</scp>) by polyoxometalates/TiO ₂ electrospun nanofiber composites. RSC Advances, 2014, 4, 44322-44326.	3.6	27
95	Ag@TiO ₂ Nanoprisms with Highly Efficient Nearâ€Infrared Photothermal Conversion for Melanoma Therapy. Chemistry - an Asian Journal, 2020, 15, 148-155.	3.3	27
96	Tuning the performance of nitrogen reduction reaction by balancing the reactivity of N2 and the desorption of NH3. Nano Research, 2021, 14, 4093-4099.	10.4	27
97	Recent Advances of Ceriaâ€Based Materials in the Oxidation of Carbon Monoxide. Small Structures, 2021, 2, 2000081.	12.0	26
98	Preparation and Application of Iron Oxide Nanoclusters. Magnetochemistry, 2019, 5, 45.	2.4	25
99	GISAXS investigation of nanoparticles in PS-b-PEO block-copolymer films. Physica B: Condensed Matter, 2005, 357, 141-143.	2.7	23
100	Photoluminescence quenching of CdTe/CdS core-shell quantum dots in aqueous solution by ZnO nanocrystals. Journal of Luminescence, 2011, 131, 1536-1540.	3.1	23
101	Smart polydiacetylene nanowire paper with tunable colorimetric response. Journal of Materials Chemistry, 2012, 22, 14839.	6.7	23
102	Improving photocatalytic hydrogen production via ultrafine-grained precipitates formed nearby surface defects of NiFe-LDH nanosheets. Chemical Engineering Journal, 2022, 446, 137301.	12.7	23
103	Synthesis of thermally stable Ag@TiO2 core–shell nanoprisms and plasmon–enhanced optical properties for a P3HT thin film. RSC Advances, 2013, 3, 6016.	3.6	22
104	Stable Ag@Oxides Nanoplates for Surface-Enhanced Raman Spectroscopy of Amino Acids. ACS Applied Materials & Interfaces, 2014, 6, 8853-8858.	8.0	22
105	Au/g-C3N4 heterostructure sensitized by black phosphorus for full solar spectrum waste-to-hydrogen conversion. Science China Materials, 2022, 65, 974-984.	6.3	22
106	<i>In situ</i> liquid cell transmission electron microscopy guiding the design of large-sized cocatalysts coupled with ultra-small photocatalysts for highly efficient energy harvesting. Journal of Materials Chemistry A, 2021, 9, 13056-13064.	10.3	21
107	Photocatalyst for Highâ€Performance H 2 Production: Gaâ€Doped Polymeric Carbon Nitride. Angewandte Chemie, 2021, 133, 6189-6194.	2.0	21
108	Electrocatalytic Dechlorination of Chloroform in Aqueous Solution on Palladium/Titanium Electrode. Chemical Engineering and Technology, 2009, 32, 134-139.	1.5	20

#	Article	IF	CITATIONS
109	Preparation of highly luminescent and color tunable carbon nanodots under visible light excitation for in vitro and in vivo bio-imaging. Journal of Materials Research, 2015, 30, 3386-3393.	2.6	20
110	TiO ₂ nanosheet array thin film for self-cleaning coating. RSC Advances, 2015, 5, 9861-9864.	3.6	20
111	TiO2 sensitized by red-, green-, blue-emissive carbon dots for enhanced H2 production. Rare Metals, 2019, 38, 404-412.	7.1	20
112	CoNi Alloy Nanoparticles Encapsulated in N-Doped Graphite Carbon Nanotubes as an Efficient Electrocatalyst for Oxygen Reduction Reaction in an Alkaline Medium. ACS Sustainable Chemistry and Engineering, 2021, 9, 8207-8213.	6.7	20
113	Defect density modulation of La2TiO5: An effective method to suppress electron-hole recombination and improve photocatalytic nitrogen fixation. Journal of Colloid and Interface Science, 2021, 602, 748-755.	9.4	20
114	Synergistic CO2 reduction and tetracycline degradation by CuInZnS-Ti3C2Tx in one photoredox cycle. Nano Research, 2022, 15, 8010-8018.	10.4	20
115	Orientated anatase TiO2 nanocrystal array thin films for self-cleaning coating. Chemical Communications, 2013, 49, 8958.	4.1	19
116	Highly dispersed few-layer MoS2 nanosheets on S, N co-doped carbon for electrocatalytic H2 production. Chinese Journal of Catalysis, 2017, 38, 1028-1037.	14.0	19
117	Functionalized ZnO@TiO2nanorod array film loaded with ZnIn0.25Cu0.02S1.395solid-solution: synthesis, characterization and enhanced visible light driven water splitting. Nanoscale, 2015, 7, 11082-11092.	5.6	18
118	Self-assembled porphyrin and macrocycle derivatives: From synthesis to function. MRS Bulletin, 2019, 44, 167-171.	3.5	18
119	Black-colored ZnO nanowires with enhanced photocatalytic hydrogen evolution. Nanotechnology, 2016, 27, 22LT01.	2.6	15
120	A synergetic effect between photogenerated carriers and photothermally enhanced electrochemical urea-assisted hydrogen generation on the Ni-NiO/Nickel Foam catalyst. Materials Advances, 2021, 2, 2104-2111.	5.4	15
121	Fe2Mo3O8/XC-72 electrocatalyst for enhanced electrocatalytic nitrogen reduction reaction under ambient conditions. Nano Research, 2022, 15, 5940-5945.	10.4	15
122	Conductive polyaniline / poly-ï‰-aminoundecanoyle blending fiber. Synthetic Metals, 1999, 102, 1198-1199.	3.9	14
123	Role of Nickel Nanoparticles in Highâ€Performance TiO ₂ /Ni/Carbon Nanohybrid Lithium/Sodiumâ€ion Battery Anodes. Chemistry - an Asian Journal, 2019, 14, 1557-1569.	3.3	13
124	A new electrochemical method based on transfer at a liquid/liquid interface: Determination of barium and strontium. Talanta, 1988, 35, 673-677.	5.5	12
125	Core Crossâ€Linked Micelleâ€Based Nanoreactors for Efficient Photocatalysis. Chemistry - an Asian Journal, 2013, 8, 2807-2812.	3.3	12
126	Hierarchical TiO ₂ spheres decorated with Au nanoparticles for visible light hydrogen production. RSC Advances, 2015, 5, 21237-21241.	3.6	11

#	Article	IF	CITATIONS
127	Recent advances of single-atom electrocatalysts for hydrogen evolution reaction. JPhys Materials, 2021, 4, 042002.	4.2	11
128	An innovative way to modulate the photoluminescence of carbonized polymer dots. Light: Science and Applications, 2022, 11, 81.	16.6	11
129	Bandgap engineering of Magnéli phase TinO2nâ``1: Electron-hole self-compensation. Journal of Chemical Physics, 2015, 143, 054701.	3.0	10
130	An annealing-free anatase TiO ₂ nanocrystal film as an electron collection layer in organic solar cells. RSC Advances, 2015, 5, 88973-88978.	3.6	10
131	Impact of side-chain extension on physical and electronic properties of cross-conjugated Poly(thienylene vinylene)s (PTVs). Polymer, 2019, 166, 115-122.	3.8	9
132	Electrocatalytic water splitting using organic polymer materials-based hybrid catalysts. MRS Bulletin, 2020, 45, 562-568.	3.5	9
133	Preparation and properties of water-based conducting polyaniline. Synthetic Metals, 1999, 102, 1224-1225.	3.9	8
134	Highly efficient organic light-emitting devices by introducing traps in the hole-injection layer. RSC Advances, 2013, 3, 14616.	3.6	8
135	One-pot preparation of novel asymmetric structure nanoparticles and its application in catalysis. RSC Advances, 2014, 4, 43586-43589.	3.6	8
136	Template-free synthesis of titania architectures with controlled morphology evolution. Journal of Materials Science, 2016, 51, 3941-3956.	3.7	8
137	Highly efficient wurtzite/zinc blende CdS visible light photocatalyst with high charge separation efficiency and stability. Journal of Chemical Physics, 2020, 152, 244703.	3.0	8
138	Exciton diffusion controlled quantum efficiency in hybrid dye sensitized solar cells. Physical Chemistry Chemical Physics, 2009, 11, 1604.	2.8	7
139	NMR and UV-Vis study on phenyl-capped oligoaniline salts. Synthetic Metals, 2001, 119, 313-314.	3.9	6
140	Porous titania/carbon hybrid microspheres templated by in situ formed polystyrene colloids. Journal of Colloid and Interface Science, 2016, 469, 242-256.	9.4	5
141	Synthesis and characterization of phenyl-capped oligoanilines. Synthetic Metals, 2001, 119, 399-400.	3.9	4
142	Fabrication of Metal-Block-Copolymer Composite Films by a Palladium-Catalyzed Electroless Nickel-Plating Process. Macromolecular Rapid Communications, 2005, 26, 613-619.	3.9	4
143	Cooperative Selfâ€Assemblyâ€Assisted Formation of Monodisperse Optically Active Spherical and Anisotropic Nanoparticles. Chemistry - A European Journal, 2009, 15, 11128-11133.	3.3	4
144	Light absorption enhancement of â^¼100 nm thick poly(3-hexylthiophene) thin-film by embedding silver nanoparticles. Applied Physics Letters, 2014, 105, .	3.3	4

#	Article	IF	CITATIONS
145	Photoluminescence: Three Colors Emission from S,N Co-doped Graphene Quantum Dots for Visible Light H2Production and Bioimaging (Advanced Optical Materials 3/2015). Advanced Optical Materials, 2015, 3, 359-359.	7.3	4
146	Nanotube network arrays with nickel oxide canopies as flexible high-energy anodes for lithium storage. Journal of Alloys and Compounds, 2020, 847, 156366.	5.5	4
147	Efficient photocatalytic overall water splitting achieved with polymeric semiconductor-based Z-scheme heterostructures. Science China Chemistry, 2021, 64, 875-876.	8.2	4
148	Light-promoted activation of oxygen and carbon monoxide for low-temperature catalytic oxidation. Cell Reports Physical Science, 2021, 2, 100678.	5.6	4
149	Functional Polymer Nanofibers and Nanotubes via Electrospinning. ACS Symposium Series, 2006, , 163-172.	0.5	3
150	Transparent Coating with TiO2 Nanorods for High-performance Photocatalytic Self-cleaning and Environmental Remediation. Chemical Research in Chinese Universities, 2020, 36, 1097-1101.	2.6	3
151	Displacement Reaction-Assisted Synthesis of Sub-Nanometer Pt/Bi Boost Methanol-Tolerant Fuel Cells. Nanomaterials, 2022, 12, 1301.	4.1	2
152	Block copolymer – a versatile template tool for nanomaterials. EXPRESS Polymer Letters, 2011, 5, 384-384.	2.1	1
153	Drawing of Spatially Oriented Electrospun Fibers. , 2009, , .		0
154	Carbon nanodots – a new rising fluorescence star. EXPRESS Polymer Letters, 2013, 7, 211-211.	2.1	0
155	Size-controllable Synthesis of Hierarchically Structured Mesoporous Anatase TiO2 Microspheres Covered With {001} Facet. Materials Research Society Symposia Proceedings, 2013, 1578, 1.	0.1	0
156	Highly Efficient Fluorescent Carbon Quantum Dots: Synthesis, Properties and Applications. World Scientific Series in Nanoscience and Nanotechnology, 2017, , 81-111.	0.1	0
157	Electrospinning – an easy way to produce nanomaterials. EXPRESS Polymer Letters, 2009, 3, 137-137.	2.1	0