Soojin Ryu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5773989/publications.pdf

Version: 2024-02-01

257357 265120 2,951 42 44 24 citations h-index g-index papers 49 49 49 3084 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The transcriptional cofactor complex CRSP is required for activity of the enhancer-binding protein Sp1. Nature, 1999, 397, 446-450.	13.7	322
2	Comprehensive catecholaminergic projectome analysis reveals single-neuron integration of zebrafish ascending and descending dopaminergic systems. Nature Communications, 2011, 2, 171.	5.8	267
3	Dopamine transporter expression distinguishes dopaminergic neurons from other catecholaminergic neurons in the developing zebrafish embryo. Mechanisms of Development, 2001, 101, 237-243.	1.7	252
4	Orthopedia Homeodomain Protein Is Essential for Diencephalic Dopaminergic Neuron Development. Current Biology, 2007, 17, 873-880.	1.8	192
5	Engineering of a red-light–activated human cAMP/cGMP-specific phosphodiesterase. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8803-8808.	3.3	163
6	Severe mental retardation with breathing abnormalities (Pitt–Hopkins syndrome) is caused by haploinsufficiency of the neuronal bHLH transcription factor TCF4. Human Molecular Genetics, 2007, 16, 1488-1494.	1.4	137
7	Molecular neuroanatomy and chemoarchitecture of the neurosecretory preopticâ€hypothalamic area in zebrafish larvae. Journal of Comparative Neurology, 2014, 522, 1542-1564.	0.9	136
8	Classification of Object Size in Retinotectal Microcircuits. Current Biology, 2014, 24, 2376-2385.	1.8	129
9	Genetic dissection of dopaminergic and noradrenergic contributions to catecholaminergic tracts in early larval zebrafish. Journal of Comparative Neurology, 2010, 518, 439-458.	0.9	108
10	An Optimized Whole-Body Cortisol Quantification Method for Assessing Stress Levels in Larval Zebrafish. PLoS ONE, 2013, 8, e79406.	1.1	108
11	Layer-Specific Targeting of Direction-Selective Neurons in the Zebrafish Optic Tectum. Neuron, 2012, 76, 1147-1160.	3.8	98
12	Expression and function of nr4a2, lmx1b, and pitx3 in zebrafish dopaminergic and noradrenergic neuronal development. BMC Developmental Biology, 2007, 7, 135.	2.1	89
13	Depletion of minichromosome maintenance protein 5 in the zebrafish retina causes cell-cycle defect and apoptosis. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 18467-18472.	3.3	85
14	her5 expression reveals a pool of neural stem cells in the adult zebrafish midbrain. Development (Cambridge), 2006, 133, 4293-4303.	1.2	85
15	Zebrafish diencephalic A11-related dopaminergic neurons share a conserved transcriptional network with neuroendocrine cell lineages. Development (Cambridge), 2009, 136, 1007-1017.	1.2	77
16	Habenula Circuit Development: Past, Present, and Future. Frontiers in Neuroscience, 2012, 6, 51.	1.4	56
17	Identification of accessory olfactory system and medial amygdala in the zebrafish. Scientific Reports, 2017, 7, 44295.	1.6	53
18	Optogenetic elevation of endogenous glucocorticoid level in larval zebrafish. Frontiers in Neural Circuits, 2013, 7, 82.	1.4	51

#	Article	IF	Citations
19	Coexpression analysis of nine neuropeptides in the neurosecretory preoptic area of larval zebrafish. Frontiers in Neuroanatomy, 2015, 9, 2.	0.9	49
20	Specification of posterior hypothalamic neurons requires coordinated activities of Fezf2, Otp, Sim1a and Foxb1.2. Development (Cambridge), 2013, 140, 1762-1773.	1.2	41
21	The neuropeptide Pth2 dynamically senses others via mechanosensation. Nature, 2020, 588, 653-657.	13.7	39
22	The behavior of larval zebrafish reveals stressor-mediated anorexia during early vertebrate development. Frontiers in Behavioral Neuroscience, 2014, 8, 367.	1.0	38
23	Optogenetically enhanced pituitary corticotroph cell activity post-stress onset causes rapid organizing effects on behaviour. Nature Communications, 2016, 7, 12620.	5.8	34
24	The Severity of Acute Stress Is Represented by Increased Synchronous Activity and Recruitment of Hypothalamic CRH Neurons. Journal of Neuroscience, 2016, 36, 3350-3362.	1.7	33
25	Minichromosome Maintenance Proteins as Markers for Proliferation Zones During Embryogenesis. Cell Cycle, 2006, 5, 1140-1142.	1.3	28
26	Single-Cell Reconstruction of Oxytocinergic Neurons Reveals Separate Hypophysiotropic and Encephalotropic Subtypes in Larval Zebrafish. ENeuro, 2017, 4, ENEURO.0278-16.2016.	0.9	27
27	Anatomy, development, and plasticity of the neurosecretory hypothalamus in zebrafish. Cell and Tissue Research, 2019, 375, 5-22.	1.5	26
28	Targeting retinal dopaminergic neurons in tyrosine hydroxylase-driven green fluorescent protein transgenic zebrafish. Molecular Vision, 2008, 14, 2475-83.	1.1	23
29	Manipulation of Interrenal Cell Function in Developing Zebrafish Using Genetically Targeted Ablation and an Optogenetic Tool. Endocrinology, 2015, 156, 3394-3401.	1.4	22
30	The Effects of Early Life Stress on the Brain and Behaviour: Insights From Zebrafish Models. Frontiers in Cell and Developmental Biology, 2021, 9, 657591.	1.8	22
31	Bistable Photoswitch Allows in Vivo Control of Hematopoiesis. ACS Central Science, 2022, 8, 57-66.	5.3	18
32	Positive taxis and sustained responsiveness to water motions in larval zebrafish. Frontiers in Neural Circuits, 2015, 9, 9.	1.4	17
33	iDamlDseq and iDEAR: An improved method and computational pipeline to profile chromatin-binding proteins. Development (Cambridge), 2016, 143, 4272-4278.	1.2	16
34	Performance on innate behaviour during early development as a function of stress level. Scientific Reports, 2017, 7, 7840.	1.6	15
35	Differential Roles of Transcriptional Mediator Complex Subunits Crsp34/Med27, Crsp150/Med14 and Trap100/Med24 During Zebrafish Retinal Development. Genetics, 2006, 174, 693-705.	1.2	14
36	A vertebrate-conserved cis-regulatory module for targeted expression in the main hypothalamic regulatory region for the stress response. BMC Developmental Biology, 2014, 14, 41.	2.1	14

3

Soojin Ryu

#	Article	IF	CITATIONS
37	Active behaviour during early development shapes glucocorticoid reactivity. Scientific Reports, 2019, 9, 12796.	1.6	14
38	Early Commissural Diencephalic Neurons Control Habenular Axon Extension and Targeting. Current Biology, 2017, 27, 270-278.	1.8	13
39	Oxytocin receptors influence the development and maintenance of social behavior in zebrafish (Danio) Tj ETQq1 1	0.784314 1.6	t rgBT /Ove
40	The neuropeptide Pth2 modulates social behavior and anxiety in zebrafish. IScience, 2022, 25, 103868.	1.9	11
41	Larval Zebrafish Proteome Regulation in Response to an Environmental Challenge. Proteomics, 2019, 19, 1900028.	1.3	5
42	A versatile transcription factor: Multiple roles of <i>orthopedia a</i> (<i>otpa</i>) beyond its restricted localization in dopaminergic systems of developing and adult zebrafish (<i>Danio rerio</i>) brains. Journal of Comparative Neurology, 2022, 530, 2537-2561.	0.9	3
43	Orthopedia Homeodomain Protein Is Essential for Diencephalic Dopaminergic Neuron Development. Current Biology, 2008, 18, 310.	1.8	o
44	Optogenetic Interpellation of Behavior Employing Unrestrained Zebrafish Larvae. Neuromethods, 2018, , 117-131.	0.2	0