Maryam Roza Yazdani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5773451/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hollow Filaments Synthesized by Dry-Jet Wet Spinning of Cellulose Nanofibrils: Structural Properties and Thermoregulation with Phase-Change Infills. ACS Applied Polymer Materials, 2022, 4, 2908-2916.	2.0	15
2	Production and characterization of porous magnetic biochar: before and after phosphate adsorption insights. Journal of Porous Materials, 2022, 29, 849-859.	1.3	11
3	Thermal conductivity of sugar alcohols. Solar Energy Materials and Solar Cells, 2022, 243, 111796.	3.0	12
4	Adsorptive behavior of phosphorus onto recycled waste biosolids after being acid leached from wastewater sludge. Chemical Engineering Journal Advances, 2022, 11, 100329.	2.4	3
5	Leakage-proof microencapsulation of phase change materials by emulsification with acetylated cellulose nanofibrils. Carbohydrate Polymers, 2021, 254, 117279.	5.1	40
6	Cellulose Nanofibrils Endow Phase-Change Polyethylene Glycol with Form Control and Solid-to-gel Transition for Thermal Energy Storage. ACS Applied Materials & Interfaces, 2021, 13, 6188-6200.	4.0	51
7	Exceptional cold-crystallization kinetics of erythritol-polyelectrolyte enables long-term thermal energy storage. Solar Energy Materials and Solar Cells, 2021, 230, 111273.	3.0	17
8	Detailed performance analysis of the wet extractive grinding process for higher calcium yields from steelmaking slags. Chemical Engineering and Processing: Process Intensification, 2021, 166, 108489.	1.8	2
9	Cost-effective Electro-Thermal Energy Storage to balance small scale renewable energy systems. Journal of Energy Storage, 2021, 41, 102829.	3.9	27
10	Efficient storage and recovery of waste heat by phase change material embedded within additively manufactured grid heat exchangers. International Journal of Heat and Mass Transfer, 2021, 181, 121846.	2.5	24
11	Tailoring metal-impregnated biochars for selective removal of natural organic matter and dissolved phosphorus from the aqueous phase. Microporous and Mesoporous Materials, 2021, 328, 111499.	2.2	17
12	lonic cross-linked polyvinyl alcohol tunes vitrification and cold-crystallization of sugar alcohol for long-term thermal energy storage. Green Chemistry, 2020, 22, 5447-5462.	4.6	47
13	Cold-crystallizing erythritol-polyelectrolyte: Scaling up reliable long-term heat storage material. Applied Energy, 2020, 266, 114890.	5.1	23
14	Wet extractive grinding process for efficient calcium recovery from steelmaking slags. Chemical Engineering and Processing: Process Intensification, 2020, 151, 107917.	1.8	3
15	Tailored mesoporous biochar sorbents from pinecone biomass for the adsorption of natural organic matter from lake water. Journal of Molecular Liquids, 2019, 291, 111248.	2.3	45
16	Dataset for natural organic matter treatment by tailored biochars. Data in Brief, 2019, 25, 104353.	0.5	2
17	Chitosan–Zinc(II) Complexes as a Bio-Sorbent for the Adsorptive Abatement of Phosphate: Mechanism of Complexation and Assessment of Adsorption Performance. Polymers, 2018, 10, 25.	2.0	44
18	Synthesis, characterization and exploitation of nano-TiO 2 /feldspar-embedded chitosan beads towards UV-assisted adsorptive abatement of aqueous arsenic (As). Chemical Engineering Journal, 2017, 316, 370-382.	6.6	55

#	Article	IF	CITATIONS
19	Adsorptive removal of arsenic(V) from aqueous phase by feldspars: Kinetics, mechanism, and thermodynamic aspects of adsorption. Journal of Molecular Liquids, 2016, 214, 149-156.	2.3	107
20	Preparation and Characterization of Chitosan/Feldspar Biohybrid as an Adsorbent: Optimization of Adsorption Process via Response Surface Modeling. Scientific World Journal, The, 2014, 2014, 1-13.	0.8	17
21	Feldspar/titanium dioxide/chitosan as a biophotocatalyst hybrid for the removal of organic dyes from aquatic phases. Journal of Applied Polymer Science, 2014, 131, .	1.3	11
22	Isotherm, Kinetic, and Thermodynamic of Cationic Dye Removal from Binary System by Feldspar. Separation Science and Technology, 2012, 47, 1660-1672.	1.3	22
23	Surfactantâ€modified feldspar: Isotherm, kinetic, and thermodynamic of binary system dye removal. Journal of Applied Polymer Science, 2012, 126, 340-349.	1.3	13