Duncan J Stewart

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5772467/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Expression of Endothelin-1 in the Lungs of Patients with Pulmonary Hypertension. New England Journal of Medicine, 1993, 328, 1732-1739.	13.9	1,698
2	Safety of Cell Therapy with Mesenchymal Stromal Cells (SafeCell): A Systematic Review and Meta-Analysis of Clinical Trials. PLoS ONE, 2012, 7, e47559.	1.1	906
3	Increased Plasma Endothelin-1 in Pulmonary Hypertension: Marker or Mediator of Disease?. Annals of Internal Medicine, 1991, 114, 464-469.	2.0	854
4	Mesenchymal Stem Cells Reduce Inflammation while Enhancing Bacterial Clearance and Improving Survival in Sepsis. American Journal of Respiratory and Critical Care Medicine, 2010, 182, 1047-1057.	2.5	622
5	Prevention of LPS-Induced Acute Lung Injury in Mice by Mesenchymal Stem Cells Overexpressing Angiopoietin 1. PLoS Medicine, 2007, 4, e269.	3.9	545
6	Rescue of Monocrotaline-Induced Pulmonary Arterial Hypertension Using Bone Marrow–Derived Endothelial-Like Progenitor Cells. Circulation Research, 2005, 96, 442-450.	2.0	447
7	Pulmonary Arterial Hypertension Is Linked to Insulin Resistance and Reversed by Peroxisome Proliferator–Activated Receptor-γ Activation. Circulation, 2007, 115, 1275-1284.	1.6	344
8	Abnormal Aortic Valve Development in Mice Lacking Endothelial Nitric Oxide Synthase. Circulation, 2000, 101, 2345-2348.	1.6	302
9	Bone Morphogenetic Protein Receptor-2 Signaling Promotes Pulmonary Arterial Endothelial Cell Survival. Circulation Research, 2006, 98, 209-217.	2.0	287
10	VEGF Gene Therapy Fails to Improve Perfusion of Ischemic Myocardium in Patients With Advanced Coronary Disease: Results of the NORTHERN Trial. Molecular Therapy, 2009, 17, 1109-1115.	3.7	232
11	Pathology and new players in the pathogenesis of brain edema. Acta Neuropathologica, 2009, 118, 197-217.	3.9	203
12	Increased caveolin-1 expression precedes decreased expression of occludin and claudin-5 during blood–brain barrier breakdown. Acta Neuropathologica, 2007, 114, 459-469.	3.9	196
13	Identification of MicroRNA-124 as a Major Regulator of Enhanced Endothelial Cell Glycolysis in Pulmonary Arterial Hypertension via PTBP1 (Polypyrimidine Tract Binding Protein) and Pyruvate Kinase M2. Circulation, 2017, 136, 2451-2467.	1.6	195
14	Role of Nitric Oxide in the Angiogenic Response In Vitro to Basic Fibroblast Growth Factor. Circulation Research, 1998, 82, 1007-1015.	2.0	192
15	Cell-Based Gene Transfer of Vascular Endothelial Growth Factor Attenuates Monocrotaline-Induced Pulmonary Hypertension. Circulation, 2001, 104, 2242-2248.	1.6	179
16	Protective Role of Angiopoietin-1 in Experimental Pulmonary Hypertension. Circulation Research, 2003, 92, 984-991.	2.0	159
17	Cell therapy with intravascular administration of mesenchymal stromal cells continues to appear safe: An updated systematic review and meta-analysis. EClinicalMedicine, 2020, 19, 100249.	3.2	150
18	Short-term Pulmonary Vasodilation With <scp>l</scp> -Arginine in Pulmonary Hypertension. Circulation, 1995, 92, 1539-1545.	1.6	149

#	Article	IF	CITATIONS
19	Cell-based Angiopoietin-1 Gene Therapy for Acute Lung Injury. American Journal of Respiratory and Critical Care Medicine, 2007, 175, 1014-1026.	2.5	146
20	Defective Lung Vascular Development and Fatal Respiratory Distress in Endothelial NO Synthase-Deficient Mice. Circulation Research, 2004, 94, 1115-1123.	2.0	134
21	Clinician Guide to Angiogenesis. Circulation, 2003, 108, 2613-2618.	1.6	127
22	Endothelial NO-Synthase Gene-Enhanced Progenitor Cell Therapy for Pulmonary Arterial Hypertension. Circulation Research, 2015, 117, 645-654.	2.0	120
23	Cellular Immunotherapy for Septic Shock. A Phase I Clinical Trial. American Journal of Respiratory and Critical Care Medicine, 2018, 197, 337-347.	2.5	115
24	New Trial Designs and Potential Therapies for Pulmonary Artery Hypertension. Journal of the American College of Cardiology, 2013, 62, D82-D91.	1.2	113
25	Single-cell hydrogel encapsulation for enhanced survival of human marrow stromal cells. Biomaterials, 2009, 30, 5445-5455.	5.7	112
26	Endothelial cells in the pathogenesis of pulmonary arterial hypertension. European Respiratory Journal, 2021, 58, 2003957.	3.1	108
27	Efficacy of Mesenchymal Stromal Cell Therapy for Acute Lung Injury in Preclinical Animal Models: A Systematic Review. PLoS ONE, 2016, 11, e0147170.	1.1	108
28	Role of apoptosis in pulmonary hypertension: From experimental models to clinical trials. , 2010, 126, 1-8.		107
29	The RENEW Trial. JACC: Cardiovascular Interventions, 2016, 9, 1576-1585.	1.1	107
30	The effect of encapsulation of cardiac stem cells within matrix-enriched hydrogel capsules on cell survival, post-ischemic cell retention and cardiac function. Biomaterials, 2014, 35, 133-142.	5.7	104
31	Safety and Efficacy of Adult Stem Cell Therapy for Acute Myocardial Infarction and Ischemic Heart Failure (SafeCell Heart): A Systematic Review and Meta-Analysis. Stem Cells Translational Medicine, 2018, 7, 857-866.	1.6	99
32	The Devil Is in the Details: Incomplete Reporting in Preclinical Animal Research. PLoS ONE, 2016, 11, e0166733.	1.1	96
33	Cell-Based Gene Transfer to the Pulmonary Vasculature. American Journal of Respiratory Cell and Molecular Biology, 1999, 21, 567-575.	1.4	92
34	Microvascular Regeneration in Established Pulmonary Hypertension by Angiogenic Gene Transfer. American Journal of Respiratory Cell and Molecular Biology, 2006, 35, 182-189.	1.4	84
35	The Immunomodulatory and Therapeutic Effects of Mesenchymal Stromal Cells for Acute Lung Injury and Sepsis. Journal of Cellular Physiology, 2015, 230, 2606-2617.	2.0	81
36	Rationale and design of Enhanced Angiogenic Cell Therapy in Acute Myocardial Infarction (ENACT-AMI): The first randomized placebo-controlled trial of enhanced progenitor cell therapy for acute myocardial infarction. American Heart Journal, 2010, 159, 354-360.	1.2	77

3

#	Article	IF	CITATIONS
37	Marked Strain-Specific Differences in the SU5416 Rat Model of Severe Pulmonary Arterial Hypertension. American Journal of Respiratory Cell and Molecular Biology, 2016, 54, 461-468.	1.4	77
38	Activated NK cells cause placental dysfunction and miscarriages in fetal alloimmune thrombocytopenia. Nature Communications, 2017, 8, 224.	5.8	77
39	Network Analysis of Transcriptional Responses Induced by Mesenchymal Stem Cell Treatment of Experimental Sepsis. American Journal of Pathology, 2012, 181, 1681-1692.	1.9	76
40	Innate Immunity in the Therapeutic Actions of Endothelial Progenitor Cells in Pulmonary Hypertension. American Journal of Respiratory Cell and Molecular Biology, 2010, 43, 546-554.	1.4	73
41	Evaluating mesenchymal stem cell therapy for sepsis with preclinical meta-analyses prior to initiating a first-in-human trial. ELife, 2016, 5, .	2.8	73
42	Blockade of endothelin receptors markedly reduces atherosclerosis in LDL receptor deficient mice: role of endothelin in macrophage foam cell formation. Cardiovascular Research, 2000, 48, 158-167.	1.8	72
43	An Analysis of Mesenchymal Stem Cell-Derived Extracellular Vesicles for Preclinical Use. ACS Nano, 2020, 14, 9728-9743.	7.3	72
44	Continuous Infusion of Epoprostenol Improves the Net Balance Between Pulmonary Endothelin-1 Clearance and Release in Primary Pulmonary Hypertension. Circulation, 1999, 99, 3266-3271.	1.6	70
45	Proteomic Analysis Implicates Translationally Controlled Tumor Protein as a Novel Mediator of Occlusive Vascular Remodeling in Pulmonary Arterial Hypertension. Circulation, 2014, 129, 2125-2135.	1.6	70
46	Vascular contributions to 16p11.2 deletion autism syndrome modeled in mice. Nature Neuroscience, 2020, 23, 1090-1101.	7.1	70
47	Expression of Nitric Oxide Synthases and Nitrotyrosine during Blood-Brain Barrier Breakdown and Repair after Cold Injury. Laboratory Investigation, 2001, 81, 41-49.	1.7	67
48	Systematic review of microRNA biomarkers in acute coronary syndrome and stable coronary artery disease. Cardiovascular Research, 2020, 116, 1113-1124.	1.8	60
49	Effects of Mesenchymal Stem Cell Treatment on Systemic Cytokine Levels in a Phase 1 Dose Escalation Safety Trial of Septic Shock Patients*. Critical Care Medicine, 2019, 47, 918-925.	0.4	58
50	Shifts in myocardial fatty acid and glucose metabolism in pulmonary arterial hypertension: a potential mechanism for a maladaptive right ventricular response. European Heart Journal Cardiovascular Imaging, 2016, 17, 1424-1431.	0.5	53
51	Assessment of Circulating LncRNAs Under Physiologic and Pathologic Conditions in Humans Reveals Potential Limitations as Biomarkers. Scientific Reports, 2016, 6, 36596.	1.6	52
52	miR-26a Linked to Pulmonary Hypertension by Global Assessment of Circulating Extracellular MicroRNAs. American Journal of Respiratory and Critical Care Medicine, 2013, 188, 1472-1475.	2.5	50
53	Paracrine Engineering of Human Cardiac Stem Cells With Insulinâ€Like Growth Factor 1 Enhances Myocardial Repair. Journal of the American Heart Association, 2015, 4, e002104.	1.6	48
54	From the Lab to Patients: a Systematic Review and Meta-Analysis of Mesenchymal Stem Cell Therapy for Stroke. Translational Stroke Research, 2020, 11, 345-364.	2.3	48

#	Article	IF	CITATIONS
55	Long-Term Effects of Nonselective Endothelin A and B Receptor Antagonism in Postinfarction Rat. Circulation, 2001, 104, 2075-2081.	1.6	45
56	Medical Therapy for Heart Failure Associated With Pulmonary Hypertension. Circulation Research, 2019, 124, 1551-1567.	2.0	45
57	Customized Internal Reference Controls for Improved Assessment of Circulating MicroRNAs in Disease. PLoS ONE, 2015, 10, e0127443.	1.1	42
58	Transient Receptor Potential Melastatin 7 Cation Channel Kinase. Hypertension, 2016, 67, 763-773.	1.3	39
59	Mesenchymal stromal (stem) cell therapy modulates miR-193b-5p expression to attenuate sepsis-induced acute lung injury. European Respiratory Journal, 2022, 59, 2004216.	3.1	36
60	Role of Angiopoietin-1 in Experimental and Human Pulmonary Arterial Hypertension. Chest, 2005, 128, 633S-642S.	0.4	35
61	Cardiotrophin 1 stimulates beneficial myogenic and vascular remodeling of the heart. Cell Research, 2017, 27, 1195-1215.	5.7	35
62	Fischer rats exhibit maladaptive structural and molecular right ventricular remodelling in severe pulmonary hypertension: a genetically prone model for right heart failure. Cardiovascular Research, 2019, 115, 788-799.	1.8	35
63	A Potential Role for Exosomal Translationally Controlled Tumor Protein Export in Vascular Remodeling in Pulmonary Arterial Hypertension. American Journal of Respiratory Cell and Molecular Biology, 2018, 59, 467-478.	1.4	34
64	Sustained Improvement in Perfusion and Flow Reserve After Temporally Separated Delivery of Vascular Endothelial Growth Factor and Angiopoietin-1 Plasmid Deoxyribonucleic Acid. Journal of the American College of Cardiology, 2012, 59, 1320-1328.	1.2	33
65	Proliferative Versus Degenerative Paradigms in Pulmonary Arterial Hypertension. Circulation Research, 2017, 120, 1237-1239.	2.0	32
66	Discordant Regulation of microRNA Between Multiple Experimental Models and Human Pulmonary Hypertension. Chest, 2015, 148, 481-490.	0.4	31
67	Interleukin-6 Mediates Post-Infarct Repair by Cardiac Explant-Derived Stem Cells. Theranostics, 2017, 7, 4850-4861.	4.6	31
68	Mesenchymal stromal cell extracellular vesicles as therapy for acute and chronic respiratory diseases: A metaâ€analysis. Journal of Extracellular Vesicles, 2021, 10, e12141.	5.5	31
69	Fluorescent microangiography (FMA): an improved tool to visualize the pulmonary microvasculature. Laboratory Investigation, 2006, 86, 409-416.	1.7	29
70	Meta-analysis of the effects of endothelin receptor blockade on survival in experimental heart failure. Journal of Cardiac Failure, 2003, 9, 368-374.	0.7	28
71	Deterministic Encapsulation of Human Cardiac Stem Cells in Variable Composition Nanoporous Cel Cocoons To Enhance Therapeutic Repair of Injured Myocardium. ACS Nano, 2018, 12, 4338-4350.	7.3	28
72	Cell-Based Therapies for Lung Vascular Diseases: Lessons for the Future. Proceedings of the American Thoracic Society, 2011, 8, 535-540.	3.5	27

#	Article	IF	CITATIONS
73	Paracrine Engineering of Human Explant-Derived Cardiac Stem Cells to Over-Express Stromal-Cell Derived Factor 1α Enhances Myocardial Repair. Stem Cells, 2016, 34, 1826-1835.	1.4	27
74	Mortality trends in pulmonary arterial hypertension in Canada: a temporal analysis of survival per ESC/ERS guideline era. European Respiratory Journal, 2022, 59, 2101552.	3.1	27
75	Regenerative Cell and Tissue-based Therapies for Pulmonary Arterial Hypertension. Canadian Journal of Cardiology, 2014, 30, 1350-1360.	0.8	26
76	Thawed Mesenchymal Stem Cell Product Shows Comparable Immunomodulatory Potency to Cultured Cells In Vitro and in Polymicrobial Septic Animals. Scientific Reports, 2019, 9, 18078.	1.6	26
77	Genetically Modified Mesenchymal Stromal/Stem Cells: Application in Critical Illness. Stem Cell Reviews and Reports, 2020, 16, 812-827.	1.7	26
78	Occlusive Lung Arterial Lesions in Endothelial-Targeted, Fas-Induced Apoptosis Transgenic Mice. American Journal of Respiratory Cell and Molecular Biology, 2015, 53, 712-718.	1.4	25
79	The impact of patient co-morbidities on the regenerative capacity of cardiac explant-derived stem cells. Stem Cell Research and Therapy, 2016, 7, 60.	2.4	25
80	Clinical Features and Outcomes of Acute Coronary Syndrome in Women With Previous Pregnancy Complications. Canadian Journal of Cardiology, 2017, 33, 1683-1692.	0.8	23
81	Autologous cell therapy for cardiac repair. Expert Opinion on Biological Therapy, 2011, 11, 489-508.	1.4	20
82	VEGF masks BNIP3-mediated apoptosis of hypoxic endothelial cells. Angiogenesis, 2011, 14, 199-207.	3.7	20
83	Circulating MicroRNAs Implicate Multiple Atherogenic Abnormalities in the Long-Term Cardiovascular Sequelae of Preeclampsia. American Journal of Hypertension, 2018, 31, 1093-1097.	1.0	20
84	Systematic Assessment of Strategies for Lung-targeted Delivery of MicroRNA Mimics. Theranostics, 2018, 8, 1213-1226.	4.6	20
85	Efficacy of treprostinil in the SU5416â€hypoxia model of severe pulmonary arterial hypertension: haemodynamic benefits are not associated with improvements in arterial remodelling. British Journal of Pharmacology, 2018, 175, 3976-3989.	2.7	20
86	Increased Expression of Vascular Endothelial Growth Factor-D Following Brain Injury. International Journal of Molecular Sciences, 2019, 20, 1594.	1.8	19
87	A fast, simple, and reproducible automated synthesis of [¹⁸ F]FPyKYNE (RGDyK) for <i>α</i> _v <i>β</i> ₃ receptor positron emission tomography imaging. Journal of Labelled Compounds and Radiopharmaceuticals, 2012, 55, 57-60.	0.5	18
88	Advances in Stem Cell and Cell-Based Gene Therapy Approaches for Experimental Acute Lung Injury: A Review of Preclinical Studies. Human Gene Therapy, 2016, 27, 802-812.	1.4	18
89	Mesenchymal stromal/stem cells modulate response to experimental sepsis-induced lung injury via regulation of miR-27a-5p in recipient mice. Thorax, 2020, 75, 556-567.	2.7	17
90	Gene engineered mesenchymal stem cells: greater transgene expression and efficacy with minicircle vs. plasmid DNA vectors in a mouse model of acute lung injury. Stem Cell Research and Therapy, 2021, 12, 184.	2.4	17

#	Article	IF	CITATIONS
91	Deterministic paracrine repair of injured myocardium using microfluidic-based cocooning of heart explant-derived cells. Biomaterials, 2020, 247, 120010.	5.7	16
92	Targeted Delivery of Genes to Endothelial Cells and Cell- and Gene-Based Therapy in Pulmonary Vascular Diseases. , 2013, 3, 1749-1779.		15
93	Pulmonary and Neurologic Effects of Mesenchymal Stromal Cell Extracellular Vesicles in a Multifactorial Lung Injury Model. American Journal of Respiratory and Critical Care Medicine, 2022, 205, 1186-1201.	2.5	15
94	Evolving Concepts in Endothelial Pathobiology of Pulmonary Arterial Hypertension. Hypertension, 2022, 79, 1580-1590.	1.3	15
95	Methods and efficacy of extracellular vesicles derived from mesenchymal stromal cells in animal models of disease: a preclinical systematic review protocol. Systematic Reviews, 2019, 8, 322.	2.5	14
96	Brief Report: Elastin Microfibril Interface 1 and Integrin-Linked Protein Kinase Are Novel Markers of Islet Regenerative Function in Human Multipotent Mesenchymal Stromal Cells. Stem Cells, 2016, 34, 2249-2255.	1.4	13
97	Molecular Changes Associated with the Protective Effects of Angiopoietin-1 During Blood-Brain Barrier Breakdown Post-Injury. Molecular Neurobiology, 2017, 54, 4232-4242.	1.9	13
98	Lack of elevation in plasma levels of proâ€inflammatory cytokines in common rodent models of pulmonary arterial hypertension: questions of construct validity for human patients. Pulmonary Circulation, 2017, 7, 476-485.	0.8	13
99	Emerging therapies for right ventricular dysfunction and failure. Cardiovascular Diagnosis and Therapy, 2020, 10, 1735-1767.	0.7	13
100	Systemic delivery of MicroRNA mimics with polyethylenimine elevates pulmonary microRNA levels, but lacks pulmonary selectivity. Pulmonary Circulation, 2018, 8, 1-4.	0.8	12
101	Strategies for controlling egress of therapeutic cells from hydrogel microcapsules. Journal of Tissue Engineering and Regenerative Medicine, 2019, 13, 612-624.	1.3	12
102	Collagen-Based Microcapsules As Therapeutic Materials for Stem Cell Therapies in Infarcted Myocardium. ACS Biomaterials Science and Engineering, 2020, 6, 4614-4622.	2.6	12
103	Mesenchymal Stem/Stromal Cells Increase Cardiac MIR-187-3P Expression in Polymicrobial Animal Model of Sepsis. Shock, 2020, Publish Ahead of Print, 133-141.	1.0	12
104	Physiologic expansion of human heart-derived cells enhances therapeutic repair of injured myocardium. Stem Cell Research and Therapy, 2019, 10, 316.	2.4	11
105	Optimizing imaging of the rat pulmonary microvasculature by microâ€computed tomography. Pulmonary Circulation, 2019, 9, 1-9.	0.8	11
106	Regenerative cell therapy for pulmonary arterial hypertension in animal models: a systematic review. Stem Cell Research and Therapy, 2019, 10, 75.	2.4	11
107	Incorporation of renal function in mortality risk assessment for pulmonary arterial hypertension. Journal of Heart and Lung Transplantation, 2020, 39, 675-685.	0.3	11
108	Penetrance of Severe Pulmonary Arterial Hypertension in Response to Vascular Endothelial Growth Factor Receptor 2 Blockade in a Genetically Prone Rat Model Is Reduced by Female Sex. Journal of the American Heart Association, 2021, 10, e019488.	1.6	11

#	Article	IF	CITATIONS
109	Efficacy and safety of regenerative cell therapy for pulmonary arterial hypertension in animal models: a preclinical systematic review protocol. Systematic Reviews, 2016, 5, 89.	2.5	10
110	High circulating angiopoietin-2 levels exacerbate pulmonary inflammation but not vascular leak or mortality in endotoxin-induced lung injury in mice. Thorax, 2018, 73, 248-261.	2.7	10
111	Immunophenotypic characterization and therapeutics effects of human bone marrow- and umbilical cord-derived mesenchymal stromal cells in an experimental model of sepsis. Experimental Cell Research, 2021, 399, 112473.	1.2	10
112	A Lymphocyte-Dependent Mode of Action for Imatinib Mesylate in Experimental Pulmonary Hypertension. American Journal of Pathology, 2013, 182, 1541-1551.	1.9	9
113	Effects of Riociguat on Right Ventricular Remodelling in Chronic Thromboembolic Pulmonary Hypertension Patients: A Prospective Study. Canadian Journal of Cardiology, 2018, 34, 1137-1144.	0.8	9
114	The role of transglutaminase 2 and osteopontin in matrix protein supplemented microencapsulation of marrow stromal cells. Biomaterials, 2010, 31, 9256-9265.	5.7	8
115	Emphysema Is—at the Most—Only a Mild Phenotype in the Sugen/Hypoxia Rat Model of Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2019, 200, 1447-1450.	2.5	8
116	Value of mesenchymal stem cell therapy for patients with septic shock: an early health economic evaluation. International Journal of Technology Assessment in Health Care, 2020, 36, 525-532.	0.2	8
117	Circulating miR-206 and Wnt-signaling are associated with cardiovascular complications and a history of preeclampsia in women. Clinical Science, 2020, 134, 87-101.	1.8	8
118	Reporting preclinical anesthesia study (REPEAT): Evaluating the quality of reporting in the preclinical anesthesiology literature. PLoS ONE, 2019, 14, e0215221.	1.1	7
119	The Janus Faces of Bone Morphogenetic Protein 9 in Pulmonary Arterial Hypertension. Circulation Research, 2019, 124, 822-824.	2.0	7
120	Surrogate Humane Endpoints in Small Animal Models of Acute Lung Injury: A Modified Delphi Consensus Study of Researchers and Laboratory Animal Veterinarians*. Critical Care Medicine, 2021, 49, 311-323.	0.4	7
121	Direct comparison of different therapeutic cell types susceptibility to inflammatory cytokines associated with COVID-19 acute lung injury. Stem Cell Research and Therapy, 2022, 13, 20.	2.4	7
122	The Current State of Stem Cell Therapeutics: Canadian Approaches in the International Context. Canadian Journal of Cardiology, 2014, 30, 1361-1369.	0.8	6
123	Poly(I:C) enhances mesenchymal stem cell control of myeloid cells from COVID-19 patients. IScience, 2022, 25, 104188.	1.9	6
124	Canadian Cardiovascular Society and Canadian Thoracic Society Position Statement on Pulmonary Arterial Hypertension. Canadian Respiratory Journal, 2005, 12, 303-315.	0.8	5
125	Engineering blood outgrowth endothelial cells to optimize endothelial nitric oxide synthase and extracellular matrix production for coating of blood contacting surfaces. Acta Biomaterialia, 2020, 109, 109-120.	4.1	5
126	Transcriptomically Guided Mesendoderm Induction of Human Pluripotent Stem Cells Using a Systematically Defined Culture Scheme. Stem Cell Reports, 2019, 13, 1111-1125.	2.3	4

#	Article	IF	CITATIONS
127	Myeloid angiogenic cells exhibit impaired migration, reduced expression of endothelial markers, and increased apoptosis in idiopathic pulmonary arterial hypertension. Canadian Journal of Physiology and Pharmacology, 2019, 97, 306-312.	0.7	4
128	The Adult Sprague-Dawley Sugen-Hypoxia Rat Is Still "the One:―A Model of Group 1 Pulmonary Hypertension: Reply to Le Cras and Abman. American Journal of Respiratory and Critical Care Medicine, 2020, 201, 621-624.	2.5	4
129	Nitric Oxide Puzzles and Paradoxes in Heart Failure: How to Fit the Pieces Together?. Clinical Science, 1998, 94, 3-4.	1.8	3
130	Characterization of a New Monocrotaline Rat Model to Study Chronic Neonatal Pulmonary Hypertension. American Journal of Respiratory Cell and Molecular Biology, 2021, 65, 331-334.	1.4	3
131	Taking the right ventricle to â€~task' in pulmonary hypertension: role of TASK1/KCNK3 in RV dysfunction. Cardiovascular Research, 2018, 114, 776-778.	1.8	2
132	Go with the (back) flow: what can retrograde perfusion teach us about arterial remodeling in pulmonary arterial hypertension?. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2018, 314, L797-L798.	1.3	2
133	Macro―and microâ€heterogeneity of lung endothelial cells: they may not be smooth, but they got the moves. Pulmonary Circulation, 2017, 7, 755-757.	0.8	1
134	Pulmonary arterial hypertension associated with abatacept treatment for rheumatoid arthritis: A case report. Canadian Journal of Respiratory, Critical Care, and Sleep Medicine, 2018, 2, 41-44.	0.2	1
135	[11C]meta-hydroxyephedrine PET evaluation in experimental pulmonary arterial hypertension: Effects of carvedilol of right ventricular sympathetic function. Journal of Nuclear Cardiology, 2021, 28, 407-422.	1.4	1
136	Therapeutic neovascularization for ischemic heart disease. Canadian Journal of Cardiology, 2004, 20 Suppl B, 49B-57B.	0.8	1
137	Angiogenesis? the answer is NO·. Cardiovascular Research, 2002, 56, 489-491.	1.8	0
138	Renal expression of endothelial nitric oxide synthase after cpb in rat. Canadian Journal of Anaesthesia, 2005, 52, A87-A87.	0.7	0
139	Stent- and Nonstent-Based Cell Therapy for Vascular Disease. , 2007, , 1698-1711.		Ο
140	New insights into the molecular pathogenesis of pulmonary arterial hypertension: Relevance to novel therapeutic strategies. Canadian Journal of Cardiology, 2010, 26, 29B-32B.	0.8	0
141	Pulmonary Hypertension and Stem Cell Therapy. , 2010, , 337-365.		Ο
142	Endothelial Cells Caught in the Crosshairs of Pulmonary Arterial Hypertension. Advances in Pulmonary Hypertension, 2010, 9, 156-158.	0.1	0
143	Transgenic mice overexpressing an endothelialâ€ŧargeted Fasâ€inducing apoptosis construct exhibit pulmonary hypertension associated with marked lung arterial remodeling. FASEB Journal, 2012, 26, 143.3.	0.2	0
144	Preâ€eclampsia and future cardiovascular disease: role of circulating microâ€RNAs. FASEB Journal, 2018, 32, lb289.	0.2	0

#	Article	IF	CITATIONS
145	Understanding potential barriers and enablers to a perioperative early phase cell therapy trial. Cytotherapy, 2022, , .	0.3	0
146	Abstract 11091: Failure of Right Ventricular Adaptation to Pressure Overload Due to a Profound Deficiency in Adenylate Kinase 1 and Impaired Ventricular Energetics. Circulation, 2021, 144, .	1.6	0
147	Abstract 12242: Nanoporous Microgel Encapsulation of Extracellular Vesicles Enhances Lung Delivery for the Treatment of Pulmonary Vascular Diseases. Circulation, 2021, 144, .	1.6	0
148	Evaluation of Lung Glucose Uptake with Fluorine-18 Fluorodeoxyglucose Positron Emission Tomography/CT in Patients with Pulmonary Arterial Hypertension and Pulmonary Hypertension Due to Left Heart Disease. Annals of Nuclear Cardiology, 2022, , .	0.0	0