
Dzmitry Bychanok

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5772340/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Window tinting films for microwave absorption and terahertz applications. Journal of Applied Physics, 2022, 131, 025110.	1.1	0
2	Control of electromagnetic properties during prototyping, fabrication and operation of low-β 325 MHz half-wave resonators. Journal Physics D: Applied Physics, 2021, 54, 255502.	1.3	1
3	Terahertz Optics of Materials with Spatially Harmonically Distributed Refractive Index. Materials, 2020, 13, 5208.	1.3	3
4	Creation of Radar-Absorbing Structures Based on Carbon Films. , 2020, , .		1
5	THz Spectroscopy as a Versatile Tool for Filler Distribution Diagnostics in Polymer Nanocomposites. Polymers, 2020, 12, 3037.	2.0	3
6	Robust design of compact microwave absorbers and waveguide matched loads based on DC-conductive 3D-printable filament. Journal Physics D: Applied Physics, 2020, 53, 305301.	1.3	10
7	Silicon carbide/phosphate ceramics composite for electromagnetic shielding applications: Whiskers vs particles. Applied Physics Letters, 2019, 114, 183105.	1.5	22
8	Electromagnetic properties of chloroprene rubber after long-term ultraviolet ageing, oil immersion and thermal degradation. Materials Research Express, 2019, 6, 075327.	0.8	3
9	Terahertz absorption in graphite nanoplatelets/polylactic acid composites. Journal Physics D: Applied Physics, 2018, 51, 145307.	1.3	36
10	Effective Carbon Nanotube/Phenol Formaldehyde Resin Based Doubleâ€Layer Absorbers of Microwave Radiation: Design and Modeling. Physica Status Solidi (B): Basic Research, 2018, 255, 1700224.	0.7	2
11	Electrical Properties of Carbon Foam in the Microwave Range. Russian Physics Journal, 2017, 59, 1703-1709.	0.2	9
12	Fully carbon metasurface: Absorbing coating in microwaves. Journal of Applied Physics, 2017, 121, .	1.1	26
13	In-situ polymerization growth of polyaniline nanowire arrays on graphene foam for high specific capacitance supercapacitor electrode. Journal of Materials Science: Materials in Electronics, 2017, 28, 17939-17947.	1.1	9
14	Modelling the physical properties of glasslike carbon foams. Journal of Physics: Conference Series, 2017, 879, 012014.	0.3	8
15	DESIGN OF CARBON NANOTUBE-BASED BROADBAND RADAR ABSORBER FOR KA-BAND FREQUENCY RANGE. Progress in Electromagnetics Research M, 2017, 53, 9-16.	0.5	15
16	EXPLORING CARBON NANOTUBES/BATIO3/FE3O4 NANOCOMPOSITES AS MICROWAVE ABSORBERS. Progress in Electromagnetics Research C, 2016, 66, 77-85.	0.6	15
17	Nanoscale reinforcement of polypropylene composites with carbon nanotubes and clay: Dispersion state, electromagnetic and nanomechanical properties. Polymer Engineering and Science, 2016, 56, 269-277.	1.5	17
18	Hollow carbon spheres in microwaves: Bio inspired absorbing coating. Applied Physics Letters, 2016, 108, .	1.5	43

DZMITRY BYCHANOK

#	Article	IF	CITATIONS
19	Electromagnetic properties of graphene nanoplatelets/epoxy composites. Composites Science and Technology, 2016, 128, 75-83.	3.8	51
20	Tannin-based carbon foams in microwave frequency range: Toward fully carbon photonic crystal. , 2015, , .		0
21	Carbon periodic cellular architectures. Carbon, 2015, 88, 70-85.	5.4	60
22	Electromagnetic properties of periodic carbon architectures at high frequencies. , 2015, , .		2
23	Electromagnetic properties of polyurethane template-based carbon foams in Ka-band. Physica Scripta, 2015, 90, 094019.	1.2	24
24	Microwave response properties of epoxy resin composites filled with graphitic fillers. , 2014, , .		1
25	Dielectric properties of graphiteâ€based epoxy composites. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 1623-1633.	0.8	32
26	Heat-resistant unfired phosphate ceramics with carbon nanotubes for electromagnetic application. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 2580-2585.	0.8	8
27	Microwave and mechanical properties of quartz/graphene-based polymer nanocomposites. Applied Physics Letters, 2013, 102, .	1.5	35
28	Characterizing epoxy composites filled with carbonaceous nanoparticles from dc to microwave. Journal of Applied Physics, 2013, 113, .	1.1	37
29	Transport mechanisms and dielectric relaxation of epoxy nanocomposites in DC to microwave range. , 2013, , .		0
30	Epoxy Resin/SWCNT Shielding Paint for Super-High-Frequency Range. Journal of Nanoelectronics and Optoelectronics, 2012, 7, 81-86.	0.1	13
31	Effective conductivity of a composite material containing carbon nanotubes in the GHz and THz frequency ranges. , 2011, , .		0
32	Anisotropy of the electromagnetic properties of polymer composites based on multiwall carbon nanotubes in the gigahertz frequency range. JETP Letters, 2011, 93, 607-611.	0.4	27
33	Electromagnetic response of polymer composites with quasi-spherical nanocarbon inclusions: theory below the percolation threshold. Journal of Polymer Engineering, 2011, 31, .	0.6	0
34	Microwave probing of nanocarbon based epoxy resin composite films: Toward electromagnetic shielding. Thin Solid Films, 2011, 519, 4114-4118.	0.8	80
35	CNT Based Epoxy Resin Composites for Conductive Applications. Nanoscience and Nanotechnology Letters, 2011, 3, 889-894.	0.4	15
36	Dielectric properties of a novel high absorbing onion-like-carbon based polymer composite. Diamond and Related Materials, 2010, 19, 91-99.	1.8	29

#	Article	IF	CITATIONS
37	Effectiveness of microwave electromagnetic shielding in carbon based epoxy nanocomposites. , 2010, ,		Ο
38	Nano-scaled onion-like carbon: Prospective material for microwave coatings. Metamaterials, 2009, 3, 148-156.	2.2	28