Katia Donadello

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5771586/publications.pdf

Version: 2024-02-01

83 papers 4,147 citations

147801 31 h-index 63 g-index

89 all docs 89 docs citations

89 times ranked 5663 citing authors

#	Article	IF	Citations
1	Fatal cytokine release syndrome by an aberrant FLIP/STAT3 axis. Cell Death and Differentiation, 2022, 29, 420-438.	11.2	14
2	Bioethics in an oncological surgery unit during the COVID-19 pandemic: the Verona experience. Updates in Surgery, 2022, , 1.	2.0	0
3	Effects of Reversal of Hypotension on Cerebral Microcirculation and Metabolism in Experimental Sepsis. Biomedicines, 2022, 10, 923.	3.2	1
4	Pain pupillary index to prognosticate unfavorable outcome in comatose cardiac arrest patients. Resuscitation, 2022, , .	3.0	3
5	Persistent Idiopathic Facial Pain (PIFP) in Patients Referred to a Multidisciplinary Centre in Italy: A Retrospective Observational Study. Journal of Clinical Medicine, 2022, 11, 3821.	2.4	1
6	Obesity as a risk factor for unfavourable outcomes in critically ill patients affected by Covid 19. Nutrition, Metabolism and Cardiovascular Diseases, 2021, 31, 762-768.	2.6	25
7	Deciphering the state of immune silence in fatal COVID-19 patients. Nature Communications, 2021, 12, 1428.	12.8	107
8	Intermuscular Adipose Tissue as a Risk Factor for Mortality and Muscle Injury in Critically Ill Patients Affected by COVID-19. Frontiers in Physiology, 2021, 12, 651167.	2.8	15
9	Good clinical practice for the use of vasopressor and inotropic drugs in critically ill patients: state-of-the-art and expert consensus. Minerva Anestesiologica, 2021, 87, 714-732.	1.0	5
10	Static compliance and driving pressure are associated with ICU mortality in intubated COVID-19 ARDS. Critical Care, 2021, 25, 263.	5.8	19
11	Dynamics of SARS-CoV2 Infection and Multi-Drug Resistant Bacteria Superinfection in Patients With Assisted Mechanical Ventilation. Frontiers in Cellular and Infection Microbiology, 2021, 11, 683409.	3.9	14
12	Outcomes of COVID-19 patients intubated after failure of non-invasive ventilation: a multicenter observational study. Scientific Reports, 2021, 11, 17730.	3.3	29
13	Perioperative Fluid Administration in Pancreatic Surgery: a Comparison of Three Regimens. Journal of Gastrointestinal Surgery, 2020, 24, 569-577.	1.7	9
14	Comparison between Acupuncture and Nutraceutical Treatment with Migratens \hat{A}^{\otimes} in Patients with Fibromyalgia Syndrome: A Prospective Randomized Clinical Trial. Nutrients, 2020, 12, 821.	4.1	23
15	Nervous system: subclinical target of SARS-CoV-2 infection. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, 1010-1012.	1.9	17
16	Baricitinib restrains the immune dysregulation in patients with severe COVID-19. Journal of Clinical Investigation, 2020, 130, 6409-6416.	8.2	213
17	Haemodynamic instability in a critically ill patient with covid-19 pneumonia: searching over the chest report of a clinical case and mini-review of the literature. Case Reports and Images in Surgery, 2020, 3,	0.0	1
18	A practical approach to the use of targeted temperature management after cardiac arrest. Minerva Anestesiologica, 2020, 86, 1103-1110.	1.0	4

#	Article	IF	CITATIONS
19	Why are you so tired after surgery?. Minerva Anestesiologica, 2020, 86, 1259-1262.	1.0	1
20	Estimation of central arterial pressure from the radial artery in patients undergoing invasive neuroradiological procedures. BMC Anesthesiology, 2019, 19, 173.	1.8	5
21	Ultramicronized Palmitoylethanolamide (um-PEA) as Add-on Treatment in Fibromyalgia Syndrome (FMS): Retrospective Observational Study on 407 Patients. CNS and Neurological Disorders - Drug Targets, 2019, 18, 326-333.	1.4	18
22	Hemadsorption in cardiac surgery: myth against reality. Minerva Anestesiologica, 2019, 85, 697-700.	1.0	2
23	Are we ready for automated optimal cerebral perfusion pressure?. Minerva Anestesiologica, 2018, 84, 7-9.	1.0	5
24	No relationship between red blood cell distribution width and microcirculatory alterations in septic patients. Clinical Hemorheology and Microcirculation, 2017, 66, 131-141.	1.7	18
25	Should Hyperoxia Be Avoided During Sepsis? An Experimental Study in Ovine Peritonitis*. Critical Care Medicine, 2017, 45, e1060-e1067.	0.9	15
26	The potential role of auditory evoked potentials to assess prognosis in comatose survivors from cardiac arrest. Resuscitation, 2017, 120, 119-124.	3.0	17
27	Prognostic implications of blood lactate concentrations after cardiac arrest: a retrospective study. Annals of Intensive Care, 2017, 7, 101.	4.6	35
28	ISCHEMIC CONDITIONING PROTECTS THE MICROCIRCULATION, PRESERVES ORGAN FUNCTION, AND PROLONGS SURVIVAL IN SEPSIS. Shock, 2016, 45, 419-427.	2.1	20
29	The Harmful Effects of Hypertonic Sodium Lactate Administration in Hyperdynamic Septic Shock. Shock, 2016, 46, 663-671.	2.1	17
30	Evaluation of Tissue Oxygenation. , 2016, , 91-97.		0
31	170. Critical Care Medicine, 2015, 43, 44.	0.9	0
32	148. Critical Care Medicine, 2015, 43, 38.	0.9	0
33	Acute kidney injury after cardiac arrest. Critical Care, 2015, 19, 169.	5.8	78
34	Reduced red blood cell deformability over time is associated with a poor outcome in septic patients. Microvascular Research, 2015, 101, 8-14.	2.5	45
35	Greater temperature variability is not associated with a worse neurological outcome after cardiac arrest. Resuscitation, 2015, 96, 268-274.	3.0	13
36	β-Lactam pharmacokinetics during extracorporeal membrane oxygenation therapy: A case–control study. International Journal of Antimicrobial Agents, 2015, 45, 278-282.	2.5	93

3

#	Article	IF	CITATIONS
37	Evaluation of endothelial damage in sepsis-related ARDS using circulating endothelial cells. Intensive Care Medicine, 2015, 41, 231-238.	8.2	37
38	Cooling Is Hard on the Heart. Critical Care Medicine, 2015, 43, 483-485.	0.9	0
39	Microcirculation Alterations in Patients With Severe Sepsis. Clinical Pulmonary Medicine, 2015, 22, 31-35.	0.3	1
40	Intensive care medicine curricula in Europe: docendo discimus. Intensive Care Medicine, 2015, 41, 2180-2183.	8.2	1
41	Normobaric hyperoxia alters the microcirculation in healthy volunteers. Microvascular Research, 2015, 98, 23-28.	2.5	76
42	Lactate Change After Cardiopulmonary Resuscitation. Critical Care Medicine, 2014, 42, e805-e806.	0.9	2
43	Lactate Measurement After Cardiac Arrest. Critical Care Medicine, 2014, 42, 1942-1943.	0.9	4
44	Vancomycin population pharmacokinetics during extracorporeal membrane oxygenation therapy: a matched cohort study. Critical Care, 2014, 18, 632.	5.8	83
45	Early neuroprotection after cardiac arrest. Current Opinion in Critical Care, 2014, 20, 250-258.	3.2	22
46	Pathophysiology of microcirculatory dysfunction and the pathogenesis of septic shock. Virulence, 2014, 5, 73-79.	4.4	297
47	C-Reactive Protein Kinetics After Major Surgery. Anesthesia and Analgesia, 2014, 119, 624-629.	2.2	71
48	Endothelium and Regulatory Inflammatory Mechanisms During Organ Rejection. Angiology, 2014, 65, 379-387.	1.8	3
49	C-reactive protein levels after cardiac arrest in patients treated with therapeutic hypothermia. Resuscitation, 2014, 85, 932-938.	3.0	31
50	Give me less sugar: how to manage glucose levels in post-anoxic injury?. Intensive Care Medicine, 2014, 40, 903-906.	8.2	1
51	Myocardial depression in sepsis: From pathogenesis to clinical manifestations and treatment. Journal of Critical Care, 2014, 29, 500-511.	2.2	230
52	Soluble urokinase–type plasminogen activator receptor as a prognostic biomarker in critically ill patients. Journal of Critical Care, 2014, 29, 144-149.	2.2	327
53	Sepsis Is Associated With Altered Cerebral Microcirculation and Tissue Hypoxia in Experimental Peritonitis*. Critical Care Medicine, 2014, 42, e114-e122.	0.9	98
54	Strongyloides disseminated infection successfully treated with parenteral ivermectin: case report with drug concentration measurements and review of the literature. International Journal of Antimicrobial Agents, 2013, 42, 580-583.	2.5	36

#	Article	IF	CITATIONS
55	Letter: Is early hypothermia deleterious in comatose survivors to cardiac arrest?. Resuscitation, 2013, 84, e35-e36.	3.0	O
56	Assessment of left ventricular function by pulse wave analysis in critically ill patients. Intensive Care Medicine, 2013, 39, 1025-1033.	8.2	111
57	Microcirculatory effects of angiotensin II inhibitors in patients with severe heart failure. Clinical Hemorheology and Microcirculation, 2013, 54, 87-98.	1.7	11
58	The Cool Bypass Toward Life. Critical Care Medicine, 2013, 41, 2248-2250.	0.9	0
59	Brain Perfusion In Sepsis. Current Vascular Pharmacology, 2013, 11, 170-186.	1.7	0
60	537. Critical Care Medicine, 2013, 41, A131.	0.9	1
61	Microcirculatory Alterations in Patients With Severe Sepsis. Critical Care Medicine, 2013, 41, 791-799.	0.9	457
62	199. Critical Care Medicine, 2013, 41, A44.	0.9	1
63	1111. Critical Care Medicine, 2013, 41, A281.	0.9	0
64	Limited effects of activated protein C on red blood cell deformability. Clinical Hemorheology and Microcirculation, 2013, 53, 387-391.	1.7	5
65	Brain Perfusion In Sepsis. Current Vascular Pharmacology, 2013, 11, 170-186.	1.7	49
66	Biomarkers as predictors of outcome after cardiac arrest. Expert Review of Clinical Pharmacology, 2012, 5, 687-699.	3.1	50
67	Intra-arrest hypothermia during cardiac arrest: a systematic review. Critical Care, 2012, 16, R41.	5.8	45
68	Monitoring the microcirculation. Journal of Clinical Monitoring and Computing, 2012, 26, 361-366.	1.6	68
69	Should we measure immunoglobulin levels in septic patients?. International Immunopharmacology, 2012, 12, 540-541.	3.8	1
70	suPAR as a prognostic biomarker in sepsis. BMC Medicine, 2012, 10, 2.	5.5	124
71	Multiorgan Dysfunction Syndrome (MODS): What is New?. , 2012, , 1-6.		0
72	Effects of changes in arterial pressure on organ perfusion during septic shock. Critical Care, 2011, 15, R222.	5.8	163

#	Article	IF	CITATIONS
73	Biomarkers in the Critically III Patient: C-reactive Protein. Critical Care Clinics, 2011, 27, 241-251.	2.6	77
74	An Uncalibrated Pulse Contour Method to Measure Cardiac Output During Aortic Counterpulsation. Anesthesia and Analgesia, 2011, 113, 1389-1395.	2.2	24
75	Sublingual and muscular microcirculatory alterations after cardiac arrest: A pilot study. Resuscitation, 2011, 82, 690-695.	3.0	68
76	Microcirculatory alterations: potential mechanisms and implications for therapy. Annals of Intensive Care, 2011, 1, 27.	4.6	190
77	Comparison between an uncalibrated pulse contour method and thermodilution technique for cardiac output estimation in septic patients. British Journal of Anaesthesia, 2011, 107, 202-208.	3.4	38
78	The relevance of severity scores in predicting outcome after cardiac arrest. Expert Review of Pharmacoeconomics and Outcomes Research, 2011, 11, 667-671.	1.4	2
79	Effects of fluids on microvascular perfusion in patients with severe sepsis. Intensive Care Medicine, 2010, 36, 949-955.	8.2	381
80	Alterations In Microvascular Perfusion Have A Stronger Prognostic Value Than Arterial Pressure Or Cardiac Output In Patients With Severe Sepsis. , 2010 , , .		0
81	EFFECTS OF A SELECTIVE INOS INHIBITOR VERSUS NOREPINEPHRINE IN THE TREATMENT OF SEPTIC SHOCK. Shock, 2010, 34, 243-249.	2.1	32
82	Link between coagulation abnormalities and microcirculatory dysfunction in critically ill patients. Current Opinion in Anaesthesiology, 2009, 22, 150-154.	2.0	37
83	Monitoring the microcirculation. , 0, , 180-185.		O