Danuta Kaczorek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5771482/publications.pdf

Version: 2024-02-01

23 papers 1,289

567281 15 h-index 713466 21 g-index

23 all docs 23 docs citations

 $\begin{array}{c} 23 \\ times \ ranked \end{array}$

1052 citing authors

#	Article	IF	CITATIONS
1	Silicon pools and fluxes in soils and landscapes—a review. Journal of Plant Nutrition and Soil Science, 2006, 169, 310-329.	1.9	474
2	Assessing the extraction and quantification of amorphous silica in soils of forest and grassland ecosystems. European Journal of Soil Science, 2007, 58, 1446-1459.	3.9	136
3	Silicon Cycling in Soils Revisited. Plants, 2021, 10, 295.	3.5	105
4	Si cycling in a forest biogeosystem $\hat{a}\in$ " the importance of transient state biogenic Si pools. Biogeosciences, 2013, 10, 4991-5007.	3.3	104
5	The protozoic Si pool in temperate forest ecosystems â€" Quantification, abiotic controls and interactions with earthworms. Geoderma, 2015, 243-244, 196-204.	5.1	65
6	Silicon in the Soil–Plant Continuum: Intricate Feedback Mechanisms within Ecosystems. Plants, 2021, 10, 652.	3.5	59
7	How big is the influence of biogenic silicon pools on short-term changes in water-soluble silicon in soils? Implications from a study of a 10-year-old soil–plant system. Biogeosciences, 2017, 14, 5239-5252.	3.3	42
8	Micromorphology, chemistry, and mineralogy of bog iron ores from Poland. Catena, 2003, 54, 393-402.	5.0	38
9	A comparative micromorphological and chemical study of "Raseneisenstein―(bog iron ore) and "Ortstein― Geoderma, 2004, 121, 83-94.	5.1	38
10	Dynamics and drivers of the protozoic Si pool along a 10-year chronosequence of initial ecosystem states. Ecological Engineering, 2014, 70, 477-482.	3.6	38
11	Silicon fractions in Histosols and Gleysols of a temperate grassland site. Journal of Plant Nutrition and Soil Science, 2008, 171, 409-418.	1.9	30
12	Effects of phytolith distribution and characteristics on extractable silicon fractions in soils under different vegetation – An exploratory study on loess. Geoderma, 2019, 356, 113917.	5.1	29
13	Crop straw recycling prevents anthropogenic desilication of agricultural soil–plant systems in the temperate zone – Results from a long-term field experiment in NE Germany. Geoderma, 2021, 403, 115187.	5.1	25
14	Testate amoebae in 31 mature forest ecosystems – Densities and micro-distribution in soils. European Journal of Protistology, 2012, 48, 161-168.	1.5	21
15	As time goes byâ€"Spatiotemporal changes of biogenic Si pools in initial soils of an artificial catchment in NE Germany. Applied Soil Ecology, 2016, 105, 9-16.	4.3	21
16	Silicon uptake and isotope fractionation dynamics by crop species. Biogeosciences, 2020, 17, 6475-6490.	3.3	13
17	Silica fertilization improved wheat performance and increased phosphorus concentrations during drought at the field scale. Scientific Reports, 2021, 11, 20852.	3.3	13
18	Micrometer silicon isotope diagnostics of soils by UV femtosecond laser ablation. Chemical Geology, 2011, , .	3.3	10

#	Article	IF	CITATIONS
19	Content and Binding Forms of Heavy Metals, Aluminium and Phosphorus in Bog Iron Ores from Poland. Journal of Environmental Quality, 2009, 38, 1109-1119.	2.0	9
20	Biogenic Siliceous Features. , 2018, , 157-176.		6
21	Spatial patterns of aboveground phytogenic Si stocks in a grass-dominated catchment – results from UAS-based high-resolution remote sensing. Biogeosciences, 2021, 18, 5163-5183.	3.3	6
22	Auto-Fluorescence in Phytoliths—A Mechanistic Understanding Derived From Microscopic and Spectroscopic Analyses. Frontiers in Environmental Science, 2022, 10, .	3.3	5
23	Biological impacts on silicon availability and cycling in agricultural plant-soil systems. , 2022, , 309-324.		2