Chu-Ting Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5771398/publications.pdf

Version: 2024-02-01

45 2,084 19 papers citations h-index

48 48 48 1833
all docs docs citations times ranked citing authors

45

g-index

#	Article	IF	CITATIONS
1	The self-assembled AgCd nanoclusters: A novel plutonium separating material. Chemical Engineering Journal, 2022, 431, 134169.	12.7	1
2	Separation of minor actinides from highly acidic solutions using diglycolamide modified mesoporous silica synthesized via a novel "ring-opening click―reaction. Chemical Engineering Journal, 2022, 436, 135213.	12.7	7
3	Automated method for concurrent determination of thorium (²³⁰ Th, ²³² Th) and uranium (²³⁴ U, ²³⁵ U, ²³⁸ U) isotopes in water matrices with ICP-MS/MS. Journal of Analytical Atomic Spectrometry, 2022, 37, 919-928.	3.0	7
4	Radioanalytical chemistry for nuclear forensics in China: Progress and future perspective. Chinese Chemical Letters, 2022, 33, 3384-3394.	9.0	6
5	A simple method for Ce–Nd separation using nano-NaBiO3: Application in the isotopic analysis of U, Sr, Pb, Nd, and Hf in uranium ores. Talanta, 2022, 245, 123443.	5 . 5	1
6	Eliminating Mo isobaric interference using O ₂ as reaction gas for Tc measurement by triple quadrupole ICP-MS. Journal of Analytical Atomic Spectrometry, 2022, 37, 1174-1178.	3.0	3
7	Highly selective extraction of uranium from wastewater using amine-bridged diacetamide-functionalized silica. Journal of Hazardous Materials, 2022, 435, 129022.	12.4	15
8	Determination of trace rare earth elements in uranium ore samples by triple quadrupole inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry, 2021, 36, 2144-2152.	3.0	6
9	Exploring the ability of triple quadrupole inductively coupled plasma mass spectrometry for the determination of Pu isotopes in environmental samples. Journal of Analytical Atomic Spectrometry, 2021, 36, 2330-2337.	3.0	13
10	Metal phosphonate sorbents: Enhancement of actinide sorption performance by gamma irradiation. Chemical Engineering Journal, 2021, 430, 132753.	12.7	4
11	Pore Size Control <i>via</i> Multiple-Site Alkylation to Homogenize Sub-Nanoporous Covalent Organic Frameworks for Efficient Sieving of Xenon/Krypton. ACS Applied Materials & amp; Interfaces, 2021, 13, 1127-1134.	8.0	22
12	Novel polyazamacrocyclic receptor impregnated macroporous polymeric resins for highly efficient capture of palladium from nitric acid media. Separation and Purification Technology, 2020, 233, 115953.	7.9	19
13	Selective separation of thorium from rare earths and uranium in acidic solutions by phosphorodiamidate-functionalized silica. Chemical Engineering Journal, 2020, 392, 123717.	12.7	31
14	Pore Size Reduction by Methyl Function in Aluminum-Based Metal–Organic Frameworks for Xenon/Krypton Separation. Crystal Growth and Design, 2020, 20, 8039-8046.	3.0	21
15	Construction of covalent organic framework with unique double-ring pore for size-matching adsorption of uranium. Nanoscale, 2020, 12, 24044-24053.	5 . 6	47
16	Density functional theory investigations on the coordination of Pa(ν) with N,N-dialkylamide. New Journal of Chemistry, 2020, 44, 9477-9484.	2.8	1
17	Cerium separation with NaBiO ₃ nanoflower material <i>via</i> an oxidation adsorption strategy. Journal of Materials Chemistry A, 2020, 8, 7907-7913.	10.3	4
18	Efficient capture of actinides from strong acidic solution by hafnium phosphonate frameworks with excellent acid resistance and radiolytic stability. Chemical Engineering Journal, 2019, 355, 159-169.	12.7	33

#	Article	IF	CITATIONS
19	Binding affinity of pyridines with Am ^{III} /Cm ^{III} elucidated by density functional theory calculations. Dalton Transactions, 2019, 48, 1613-1623.	3.3	5
20	The preparation of organophosphorus ligand-modified SBA-15 for effective adsorption of Congo red and Reactive red 2. RSC Advances, 2019, 9, 13476-13485.	3.6	23
21	Density Functional Theory Investigations on the Mechanism of Formation of Pa(V) Ion in Hydrous Solutions. Molecules, 2019, 24, 1169.	3.8	1
22	The Hydrolytic Stability and Degradation Mechanism of a Hierarchically Porous Metal Alkylphosphonate Framework. Nanomaterials, 2018, 8, 166.	4.1	4
23	Pdâ€Catalyzed Vinylation of Aryl Halides with Inexpensive Organosilicon Reagents Under Mild Conditions. Chemistry - A European Journal, 2018, 24, 10324-10328.	3.3	8
24	Stereocontrolled C(sp3)â€"P bond formation with non-activated alkyl halides and tosylates. RSC Advances, 2017, 7, 24652-24656.	3.6	6
25	An initial demonstration of hierarchically porous niobium alkylphosphonates coordination polymers as potent radioanalytical separation materials. Journal of Chromatography A, 2017, 1504, 35-45.	3.7	10
26	The enhanced uranyl–amidoxime binding by the electron-donating substituents. RSC Advances, 2017, 7, 18639-18642.	3.6	9
27	The coordination of amidoxime ligands with uranyl in the gas phase: a mass spectrometry and DFT study. Dalton Transactions, 2016, 45, 16413-16421.	3.3	10
28	A category of hierarchically porous tin (IV) phosphonate backbone with the implication for radioanalytical separation. Chemical Engineering Journal, 2016, 302, 368-376.	12.7	22
29	Density functional theory investigations on the binding modes of amidoximes with uranyl ions. Dalton Transactions, 2016, 45, 3120-3129.	3.3	16
30	Fluorescent recognition of uranyl ions by a phosphorylated cyclic peptide. Chemical Communications, 2015, 51, 11769-11772.	4.1	49
31	"One-pot―synthesis of amidoxime via Pd-catalyzed cyanation and amidoximation. Organic and Biomolecular Chemistry, 2015, 13, 2541-2545.	2.8	17
32	Cu-Catalyzed cross-coupling reactions of epoxides with organoboron compounds. Chemical Communications, 2015, 51, 2388-2391.	4.1	36
33	Copper-Catalyzed/Promoted Cross-coupling of <i>gem</i> -Diborylalkanes with Nonactivated Primary Alkyl Halides: An Alternative Route to Alkylboronic Esters. Organic Letters, 2014, 16, 6342-6345.	4.6	147
34	Fabrication of a Li 4 SiO 4 –Pb tritium breeding material. Fusion Engineering and Design, 2014, 89, 3046-3053.	1.9	18
35	Copperâ€Catalyzed Reductive Crossâ€Coupling of Nonactivated Alkyl Tosylates and Mesylates with Alkyl and Aryl Bromides. Chemistry - A European Journal, 2014, 20, 15334-15338.	3.3	95
36	Promising density functional theory methods for predicting the structures of uranyl complexes. RSC Advances, 2014, 4, 50261-50270.	3.6	6

#	Article	IF	CITATIONS
37	Investigating the performance of a Rh metal catalyst in hydrogen–deuterium exchange reactions in methane for application in low-temperature membrane separators. Fusion Engineering and Design, 2014, 89, 2666-2671.	1.9	0
38	Efficient Synthesis of 1,5-Disubstituted Carbohydrazones Using K2CO3 As a Carbonyl Donor. Organic Letters, 2014, 16, 2398-2401.	4.6	7
39	Copper-Catalyzed Cross-Coupling of Nonactivated Secondary Alkyl Halides and Tosylates with Secondary Alkyl Grignard Reagents. Journal of the American Chemical Society, 2012, 134, 11124-11127.	13.7	178
40	Alkylboronic Esters from Palladium―and Nickel atalyzed Borylation of Primary and Secondary Alkyl Bromides. Advanced Synthesis and Catalysis, 2012, 354, 1685-1691.	4.3	101
41	Alkylboronic Esters from Copperâ€Catalyzed Borylation of Primary and Secondary Alkyl Halides and Pseudohalides. Angewandte Chemie - International Edition, 2012, 51, 528-532.	13.8	360
42	Cu-Catalyzed Carbon-Heteroatom Coupling Reactions under Mild Conditions Promoted by Resin-Bound Organic Ionic Bases. Journal of Organic Chemistry, 2011, 76, 800-810.	3.2	73
43	Copperâ€Catalyzed Crossâ€Coupling Reaction of Organoboron Compounds with Primary Alkyl Halides and Pseudohalides. Angewandte Chemie - International Edition, 2011, 50, 3904-3907.	13.8	194
44	Roomâ€Temperature Copperâ€Catalyzed Carbon–Nitrogen Coupling of Aryl Iodides and Bromides Promoted by Organic Ionic Bases. Angewandte Chemie - International Edition, 2009, 48, 7398-7401.	13.8	165
45	Pd-catalyzed aerobic oxidative coupling of anilides with olefins through regioselective C–H bond activation. Tetrahedron Letters, 2007, 48, 5449-5453.	1.4	96