Eulalia Planas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5771385/publications.pdf

Version: 2024-02-01

236925 233421 2,262 83 25 45 h-index citations g-index papers 85 85 85 1576 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Experimental analysis of real-scale burning tests of artificial fuel packs at the Wildland-Urban Interface. Safety Science, 2022, 146, 105568.	4.9	3
2	Safety distances for storage tanks to prevent fire damage in Wildland-Industrial Interface. Chemical Engineering Research and Design, 2021, 147, 693-702.	5.6	22
3	Fired equipment combustion chamber accidents: A historical survey. Journal of Loss Prevention in the Process Industries, 2021, 71, 104445.	3.3	5
4	Thermal Infrared Video Stabilization for Aerial Monitoring of Active Wildfires. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 2817-2832.	4.9	11
5	Wildland–Urban Interface Fires in Spain: Summary of the Policy Framework and Recommendations for Improvement. Fire Technology, 2020, 56, 1831-1851.	3.0	28
6	Experimental and computational analysis of vertical jet fires of methane in normal and sub-atmospheric pressures. Fuel, 2020, 265, 116878.	6.4	18
7	Prediction of BLEVE mechanical energy by implementation of artificial neural network. Journal of Loss Prevention in the Process Industries, 2020, 63, 104021.	3.3	11
8	WUI fire risk mitigation in Europe: A performance-based design approach at home-owner level. Journal of Safety Science and Resilience, 2020, 1, 97-105.	2.3	23
9	Performance analysis of a self-protection system for vehicles in case of WUI fire entrapment. Fire and Materials, 2020, , .	2.0	O
10	Image Similarity Metrics Suitable for Infrared Video Stabilization during Active Wildfire Monitoring: A Comparative Analysis. Remote Sensing, 2020, 12, 540.	4.0	6
11	Toward the New Generation of Surgical Meshes with 4D Response: Soft, Dynamic, and Adaptable. Advanced Functional Materials, 2020, 30, 2004145.	14.9	22
12	Analysis of the impact of wildland-urban-interface fires on LPG domestic tanks. Safety Science, 2020, 124, 104588.	4.9	18
13	Computational fluid dynamics modelling of hydrocarbon fires in open environments: Literature review. Canadian Journal of Chemical Engineering, 2020, 98, 2381-2396.	1.7	7
14	Revisiting the dispersion safety factor (DSF) for vapor clouds of liquefied flammable gases (LNG and) Tj ETQq0 0	0 rgBT /Ov	verlock 10 Tf S
15	A successful experience with the flipped classroom in the Transport Phenomena course. Education for Chemical Engineers, 2019, 26, 67-79.	4.8	12
16	A Data-Driven Fire Spread Simulator: Validation in Vall-llobrega's Fire. Frontiers in Mechanical Engineering, 2019, 5, .	1.8	15
17	Thermal radiation model for dynamic fireballs with shadowing. Chemical Engineering Research and Design, 2019, 128, 372-384.	5.6	5
18	BLEVE: The case of water and a historical survey. Journal of Loss Prevention in the Process Industries, 2019, 57, 231-238.	3.3	18

#	Article	IF	Citations
19	Configuration factors for ground level fireballs with shadowing. Journal of Loss Prevention in the Process Industries, 2018, 51, 169-177.	3.3	5
20	Automated location of active fire perimeters in aerial infrared imaging using unsupervised edge detectors. International Journal of Wildland Fire, 2018, 27, 241.	2.4	30
21	Summary of workshop large outdoor fires and the built environment. Fire Safety Journal, 2018, 100, 76-92.	3.1	51
22	A priori validation of CFD modelling of hydrocarbon pool fires. Journal of Loss Prevention in the Process Industries, 2018, 56, 18-31.	3.3	24
23	Interpolation framework to speed up near-surface wind simulations for data-driven wildfire applications. International Journal of Wildland Fire, 2018, 27, 257.	2.4	8
24	GIS-based integration of spatial and remote sensing data for wildfire monitoring. , 2018, , .		0
25	Comparative analysis of BLEVE mechanical energy and overpressure modelling. Chemical Engineering Research and Design, 2017, 106, 138-149.	5.6	28
26	Flame filtering and perimeter localization of wildfires using aerial thermal imagery. , 2017, , .		0
27	An integrated approach for tactical monitoring and data-driven spread forecasting of wildfires. Fire Safety Journal, 2017, 91, 835-844.	3.1	23
28	A new procedure to estimate BLEVE overpressure. Chemical Engineering Research and Design, 2017, 111, 320-325.	5.6	20
29	Computational Analysis of Fire Dynamics Inside a Wind Turbine. Fire Technology, 2017, 53, 1933-1942.	3.0	4
30	A new method for performing smouldering combustion field experiments in peatlands and rich-organic soils. International Journal of Wildland Fire, 2017, 26, 1040.	2.4	8
31	Short-term fire front spread prediction using inverse modelling and airborne infrared images. International Journal of Wildland Fire, 2016, 25, 1033.	2.4	26
32	On BLEVE definition, the significance of superheat limit temperature (Tsl) and LNG BLEVE's. Journal of Loss Prevention in the Process Industries, 2016, 40, 81.	3.3	9
33	Analysis of the boiling liquid expanding vapor explosion (BLEVE) of a liquefied natural gas road tanker: The Zarzalico accident. Journal of Loss Prevention in the Process Industries, 2015, 34, 127-138.	3.3	56
34	Fire as a primary event of accident domino sequences: The case of BLEVE. Reliability Engineering and System Safety, 2015, 139, 141-148.	8.9	38
35	Experimental data and CFD performance for cloud dispersion analysis: The USP-UPC project. Journal of Loss Prevention in the Process Industries, 2015, 38, 125-138.	3.3	10
36	Historical evolution of process safety and major-accident hazards prevention in Spain. Contribution of the pioneer Joaquim Casal. Journal of Loss Prevention in the Process Industries, 2014, 28, 109-117.	3.3	21

#	Article	IF	CITATIONS
37	The Effect of the Computational Grid Size on the Prediction of a Flammable Cloud Dispersion. , 2014, , .		O
38	The effect of the environment conditions on the prediction of flammable cloud dispersion. , 2014, , $11\mathchar`-19$.		0
39	Infrared imagery on wildfire research. Some examples of sound capabilities and applications. , 2012, , .		2
40	Risk analysis active learning through the investigation of real cases. Chemical Engineering Research and Design, 2012, 90, 430-435.	5.6	9
41	Effect of Wind and Slope When Scaling the Forest Fires Rate of Spread of Laboratory Experiments. Fire Technology, 2011, 47, 475-489.	3.0	18
42	Air infiltration in Catalan dwellings and sealed rooms: An experimental study. Building and Environment, 2011, 46, 2003-2011.	6.9	16
43	Computing forest fires aerial suppression effectiveness by IR monitoring. Fire Safety Journal, 2011, 46, 2-8.	3.1	25
44	Fire intensity reduction in straw fuel beds treated with a long-term retardant. Fire Safety Journal, 2011, 46, 41-47.	3.1	9
45	Different Approaches for the Head Fire Perimeter Definition in Wildland Fires. Fire Safety Science, 2011, 10, 1425-1435.	0.3	2
46	Characterization of Laboratory-Scale Fires Propagating Under the Effect of a Long-Term Retardant. Combustion Science and Technology, 2010, 182, 1083-1103.	2.3	2
47	Air leakage in Catalan dwellings: Developing an airtightness model and leakage airflow predictions. Building and Environment, 2010, 45, 1458-1469.	6.9	46
48	Pile burning of cutting debris in stands of hazel (Corylus avellana): An experimental study of smouldering combustion towards the validation of a burning protocol. Fire Safety Journal, 2010, 45, 69-81.	3.1	7
49	Experimental study of the emissivity of flames resulting from the combustion of forest fuels. International Journal of Thermal Sciences, 2010, 49, 543-554.	4.9	56
50	Characterization of the thermal degradation and heat of combustion of Pinus halepensis needles treated with ammonium-polyphosphate-based retardants. Journal of Thermal Analysis and Calorimetry, 2009, 98, 235-243.	3.6	14
51	A comparative analysis of mathematical models for relating indoor and outdoor toxic gas concentrations in accidental releases. Journal of Loss Prevention in the Process Industries, 2009, 22, 381-391.	3.3	15
52	Comparison of two methods for estimating fire positions and the rate of spread of linear flame fronts. Measurement Science and Technology, 2009, 20, 115501.	2.6	20
53	Results of the MITRA project: Monitoring and intervention for the transportation of dangerous goods. Journal of Hazardous Materials, 2008, 152, 516-526.	12.4	38
54	Different scales for studying the effectiveness of long-term forest fire retardants. Progress in Energy and Combustion Science, 2008, 34, 782-796.	31.2	32

#	Article	IF	Citations
55	Methodology for measuring geometrical and thermal characteristics of flames in laboratory forest fires. WIT Transactions on Ecology and the Environment, 2008, , .	0.0	O
56	Predicting the emissive power of hydrocarbon pool fires. Journal of Hazardous Materials, 2007, 144, 725-729.	12.4	78
57	Study of the effect of changing scale in forest fires experimentation by means of dimensional analysis. Forest Ecology and Management, 2006, 234, S113.	3.2	4
58	Modelling the effectiveness of long-term forest fire retardants. Forest Ecology and Management, 2006, 234, S235.	3.2	3
59	Computing the rate of spread of linear flame fronts by thermal image processing. Fire Safety Journal, 2006, 41, 569-579.	3.1	69
60	A survey of accidents occurring during the transport of hazardous substances by road and rail. Journal of Hazardous Materials, 2006, 133, 1-7.	12.4	133
61	A Risk Severity Index for industrial plants and sites. Journal of Hazardous Materials, 2006, 130, 242-250.	12.4	28
62	Identification of reference accident scenarios in SEVESO establishments. Reliability Engineering and System Safety, 2005, 90, 238-246.	8.9	34
63	Analysis of the geometric and radiative characteristics of hydrocarbon pool fires. Combustion and Flame, 2004, 139, 263-277.	5.2	145
64	Explosion of a road tanker containing liquified natural gas. Journal of Loss Prevention in the Process Industries, 2004, 17, 315-321.	3.3	74
65	Calculating overpressure from BLEVE explosions. Journal of Loss Prevention in the Process Industries, 2004, 17, 431-436.	3.3	77
66	Accidental burning of a fuel layer on a waterbed: a scale analysis of the models predicting the pre-boilover time and tests to published data. International Journal of Thermal Sciences, 2004, 43, 221-239.	4.9	14
67	Long-term forest fire retardants: a review of quality, effectiveness, application and environmental considerations. International Journal of Wildland Fire, 2004, 13, 1.	2.4	91
68	Determination of Flame Emissivity in Hydrocarbon Pool Fires Using Infrared Thermography. Fire Technology, 2003, 39, 261-273.	3.0	39
69	Mathematical models and calculation systems for the study of wildland fire behaviour. Progress in Energy and Combustion Science, 2003, 29, 139-153.	31.2	234
70	Calculating concentration contour co-ordinates using integral plume models. Journal of Loss Prevention in the Process Industries, 2002, 15, 507-515.	3.3	3
71	Prediction of flammability limits at reduced pressures. Chemical Engineering Science, 2001, 56, 3829-3843.	3.8	28
72	Experimental study of burning rate in hydrocarbon pool fires. Combustion and Flame, 2001, 126, 1373-1383.	5 . 2	181

#	Article	IF	CITATION
73	EFFECTS OF THIN-LAYER BOILOVER ON HYDROCARBON POOL FIRES. Combustion Science and Technology, 2001, 171, 141-161.	2.3	14
74	Fire and explosion hazards during filling/emptying of tanks. Journal of Loss Prevention in the Process Industries, 1999, 12, 479-483.	3.3	14
75	Sheltering as a protective measure against airborne virus spread. Journal of Hazardous Materials, 1999, 68, 179-189.	12.4	8
76	Modelling temperature evolution in equipment engulfed in a pool-fire. Fire Safety Journal, 1998, 30, 251-268.	3.1	20
77	Effects of fire on a container storage system—a case study. Journal of Loss Prevention in the Process Industries, 1998, 11, 323-331.	3.3	13
78	Flame temperature distribution in a pool-fire. Journal of Hazardous Materials, 1998, 62, 231-241.	12.4	27
79	Information on the risks of chemical accidents to the civil population. The experience of Baix Llobregat. Journal of Loss Prevention in the Process Industries, 1997, 10, 169-178.	3.3	6
80	Protection of equipment engulfed in a pool fire. Journal of Loss Prevention in the Process Industries, 1996, 9, 231-240.	3.3	11
81	Forecasting virus atmospherical dispersion. Studies with foot-and-mouth disease. Journal of Hazardous Materials, 1995, 43, 229-244.	12.4	13
82	COMPARTMENT AND FAÃ \ddagger ADE LARGE SCALE TESTS: BEHAVIOR COMPARISON OF DIFFERENT INSULATING MATERIALS IN CASE OF FIRE. Applications of Structural Fire Engineering, 0, , .	0.3	0
83	Short term forecasting of large scale wind-driven wildfires using thermal imaging and inverse modelling techniques., 0,, 949-960.		O