
Anna Rafaela Cavalcante Braga

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5770746/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Zein-based blends and composites. , 2022, , 511-526.		2
2	Analysis and characterization of starches from alternative sources. , 2022, , 465-488.		0
3	Biocomposites potential for nanotechnology. , 2022, , 489-510.		0
4	High-Performance Extraction Process of Anthocyanins from Jussara (Euterpe edulis) Using Deep Eutectic Solvents. Processes, 2022, 10, 615.	2.8	11
5	Fermented Jussara: Evaluation of Nanostructure Formation, Bioaccessibility, and Antioxidant Activity. Frontiers in Bioengineering and Biotechnology, 2022, 10, 814466.	4.1	6
6	Food coating using vegetable sources: importance and industrial potential, gaps of knowledge, current application, and future trends. Applied Food Research, 2022, 2, 100073.	4.0	8
7	Scaffold Production and Bone Tissue Healing Using Electrospinning: Trends and Gap of Knowledge. Regenerative Engineering and Translational Medicine, 2022, 8, 506-522.	2.9	6
8	Antioxidant potential of nature's "something blue†Something new in the marriage of biological activity and extraction methods applied to C-phycocyanin. Trends in Food Science and Technology, 2021, 107, 309-323.	15.1	46
9	Bioaccessibility and cellular uptake by Caco-2 cells of carotenoids and chlorophylls from orange peels: A comparison between conventional and ionic liquid mediated extractions. Food Chemistry, 2021, 339, 127818.	8.2	30
10	Uniaxial and Coaxial Electrospinning for Tailoring Jussara Pulp Nanofibers. Molecules, 2021, 26, 1206.	3.8	13
11	Diversification of nitrogen sources as a tool to improve endo-xylanase enzyme activity produced by Cryptococcus laurentii. Biocatalysis and Agricultural Biotechnology, 2021, 32, 101941.	3.1	4
12	The controversial effects of dehydrated powder of Gracilaria birdiae as a food supplement to juvenile male rats. Journal of Applied Phycology, 2021, 33, 1853-1867.	2.8	1
13	The potential of anthocyanins in smart, active, and bioactive eco-friendly polymer-based films: A review. Food Research International, 2021, 142, 110202.	6.2	85
14	Psyllium Improves the Quality and Shelf Life of Gluten-Free Bread. Foods, 2021, 10, 954.	4.3	23
15	Red Propolis as a Source of Antimicrobial Phytochemicals: Extraction Using High-Performance Alternative Solvents. Frontiers in Microbiology, 2021, 12, 659911.	3.5	12
16	Bioaccessibility and Cellular Uptake of Carotenoids Extracted from Bactris gasipaes Fruit: Differences between Conventional and Ionic Liquid-Mediated Extraction. Molecules, 2021, 26, 3989.	3.8	6
17	Chemical composition, bioactive compounds extraction, and observed biological activities from jussara (<i>Euterpe edulis</i>): The exotic and endangered Brazilian superfruit. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 3192-3224.	11.7	8
18	An integrated instrumental and sensory approach to describe the effects of chickpea flour, psyllium, and their combination at reducing gluten-free bread staling. Food Packaging and Shelf Life, 2021, 28, 100659.	7.5	23

#	Article	IF	CITATIONS
19	Comparison of Different Methods for Spongin-like Collagen Extraction from Marine Sponges (Chondrilla caribensis and Aplysina fulva): Physicochemical Properties and In Vitro Biological Analysis. Membranes, 2021, 11, 522.	3.0	8
20	Improvement of Bioactive Compound Levels, Antioxidant Activity, and Bioaccessibility of Carotenoids from <i>Pereskia aculeata</i> after Different Cooking Techniques. ACS Food Science & Technology, 2021, 1, 1285-1293.	2.7	7
21	Biofuels and Oils from Amazon Crops: Challenges and Opportunities for the Sustainable Use of Biodiversity Resources. Industrial Biotechnology, 2021, 17, 204-213.	0.8	1
22	Polymer nanocomposite's applications in food and bioprocessing industry. , 2021, , 237-250.		0
23	Colour stability and antioxidant activity of C-phycocyanin-added ice creams after in vitro digestion. Food Research International, 2020, 137, 109602.	6.2	35
24	Design strategies for C-phycocyanin purification: Process influence on purity grade. Separation and Purification Technology, 2020, 252, 117453.	7.9	28
25	Global health risks from pesticide use in Brazil. Nature Food, 2020, 1, 312-314.	14.0	45
26	Development and Characterization of Electrospun Nanostructures Using Polyethylene Oxide: Potential Means for Incorporation of Bioactive Compounds. Colloids and Interfaces, 2020, 4, 14.	2.1	11
27	Overcoming restrictions of bioactive compounds biological effects in food using nanometer-sized structures. Food Hydrocolloids, 2020, 107, 105939.	10.7	41
28	Biodegradable Eco-Friendly Packaging and Coatings Incorporated of Natural Active Compounds. , 2020, , 171-206.		4
29	Analytical Protocols in the Measurement of Pigments' Bioavailability. , 2020, , 229-240.		0
30	Quality control of small and large-scale brewed beers. Brazilian Applied Science Review, 2020, 4, 2135-2146.	0.1	1
31	Evaluation of freeze-dried milk-blackberry pulp mixture: Influence of adjuvants over the physical properties of the powder, anthocyanin content and antioxidant activity. Food Research International, 2019, 125, 108557.	6.2	28
32	Ionic liquid associated with ultrasonic-assisted extraction: A new approach to obtain carotenoids from orange peel. Food Research International, 2019, 126, 108653.	6.2	71
33	Brazilian Biodiversity Fruits: Discovering Bioactive Compounds from Underexplored Sources. Journal of Agricultural and Food Chemistry, 2019, 67, 1860-1876.	5.2	57
34	lonic liquid-high performance extractive approach to recover carotenoids from <i>Bactris gasipaes</i> fruits. Green Chemistry, 2019, 21, 2380-2391.	9.0	48
35	Bioavailability and biological effects of bioactive compounds extracted with natural deep eutectic solvents and ionic liquids: advantages over conventional organic solvents. Current Opinion in Food Science, 2019, 26, 25-34.	8.0	93
36	Alterations in phenolic compound levels and antioxidant activity in response to cooking technique effects: A meta-analytic investigation. Critical Reviews in Food Science and Nutrition, 2018, 58, 169-177.	10.3	70

#	Article	IF	CITATIONS
37	Application of electrospray ionization mass spectrometry fingerprinting associated with macroscopic and histological analysis for Plantago major herbal infusions quality control. Food Research International, 2018, 107, 314-324.	6.2	4
38	Lactobacillus fermentation of jussara pulp leads to the enzymatic conversion of anthocyanins increasing antioxidant activity. Journal of Food Composition and Analysis, 2018, 69, 162-170.	3.9	43
39	Bioavailability of anthocyanins: Gaps in knowledge, challenges and future research. Journal of Food Composition and Analysis, 2018, 68, 31-40.	3.9	132
40	Can ionic liquid solvents be applied in the food industry?. Trends in Food Science and Technology, 2017, 66, 117-124.	15.1	61
41	A Review of the Latest Advances in Encrypted Bioactive Peptides from Protein-Rich Waste. International Journal of Molecular Sciences, 2016, 17, 950.	4.1	168
42	Improvement of Thermal Stability of C-Phycocyanin by Nanofiber and Preservative Agents. Journal of Food Processing and Preservation, 2016, 40, 1264-1269.	2.0	39
43	Shelf life of Yellow Hake: Determinant factors for safe consumption. Revista Brasileira De Higiene E Sanidade Animal, 2016, 10, .	0.0	1
44	The existence of optimistic bias about foodborne disease by food handlers and its association with training participation and food safety performance. Food Research International, 2015, 75, 27-33.	6.2	51
45	β-Galactosidase production using glycerol and byproducts: Whey and residual glycerin. Biocatalysis and Biotransformation, 2015, 33, 208-215.	2.0	7
46	Expanded and fixed bed ion exchange chromatography for the recovery of Câ€phycocyanin in a single step by using lysed cells. Canadian Journal of Chemical Engineering, 2015, 93, 111-115.	1.7	22
47	Single Chromatographic Step for β-Galactosidase Purification: Influence of Salt and Elution Parameters. Separation Science and Technology, 2014, 49, 1817-1824.	2.5	8
48	A NEW APPROACH TO EVALUATE IMMOBILIZATION OF β-GALACTOSIDASE ON EUPERGIT®C: STRUCTURAL, KINETIC, AND THERMAL CHARACTERIZATION. Quimica Nova, 2014, , .	0.3	2
49	Propriedades Termodinâmicas da Enzima Beta-Galactosidase Imobilizada em Eupergit® C. BBR - Biochemistry and Biotechnology Reports, 2013, 2, 54.	0.0	0
50	Determinação do Reuso e Caracterização Estrutural da Enzima Beta-Galactosidase Imobilizada em Eupergit® C. BBR - Biochemistry and Biotechnology Reports, 2013, 2, 58.	0.0	0
51	Produção de Beta-galactosidase Utilizando Lactose e Clicerol na Composição do Meio de Cultivo BBR - Biochemistry and Biotechnology Reports, 2013, 2, 199.	0.0	0
52	Caracterização cinética e termodinâmica de β-galactosidase de Kluyveromyces marxianus CCT 7082 fracionada com sulfato de amônio. Brazilian Journal of Food Technology, 2012, 15, 41-49.	0.8	11
53	Effect of compressed fluids treatment on \hat{l}^2 -galactosidase activity and stability. Bioprocess and Biosystems Engineering, 2012, 35, 1541-1547.	3.4	4
54	Formulation of Culture Medium with Agroindustrial Waste for Î ² -Galactosidase Production from Kluyveromyces marxianus ATCC 16045. Food and Bioprocess Technology, 2012, 5, 1653-1663.	4.7	33

#	Article	IF	CITATIONS
55	GAMMA IRRADIATION ON FROZEN AND PACKAGED HEADED SHRIMP. Journal of Food Quality, 2009, 32, 425-435.	2.6	14
56	Imposex in Two Muricid Species (Mollusca: Gastropoda) from the Northeastern Brazilian Coast. Journal of the Brazilian Society of Ecotoxicology, 2007, 2, 81-91.	0.3	28
57	Altos Ãndices de imposex em Stramonita rustica (Mollusca:Gastropoda) em áreas portuárias dos Estados de Alagoas e Sergipe, Brasil. Tropical Oceanography, 2005, 33, .	0.0	5
58	BIOCONVERSÃO DE ANTOCIANINAS DE POLPA DE JUÇARA (Euterpe edulis Mart.) FERMENTADA POR Lactobacillus. , 0, , .		0
59	ATIVIDADE DAS ENZIMAS Î ² -GALACTOSIDASE, Î ² -GLUCOSIDASE E α-GALACTOSIDASE DURANTE A FERMENTAÇÂ DA POLPA DE JUÇARA (Euterpe edulis Mart.). , 0, , .	fO	0