Kang-Qiang Lu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5770720/publications.pdf Version: 2024-02-01

KANG-OLANG LU

#	Article	IF	CITATIONS
1	Recent progress in carbon quantum dots: synthesis, properties and applications in photocatalysis. Journal of Materials Chemistry A, 2017, 5, 3717-3734.	10.3	853
2	Stabilizing ultrasmall Au clusters for enhanced photoredox catalysis. Nature Communications, 2018, 9, 1543.	12.8	223
3	Rationally designed transition metal hydroxide nanosheet arrays on graphene for artificial CO2 reduction. Nature Communications, 2020, 11, 5181.	12.8	205
4	Photoredox catalysis over graphene aerogel-supported composites. Journal of Materials Chemistry A, 2018, 6, 4590-4604.	10.3	171
5	Multifarious roles of carbon quantum dots in heterogeneous photocatalysis. Journal of Energy Chemistry, 2016, 25, 927-935.	12.9	127
6	3D carbon quantum dots/graphene aerogel as a metal-free catalyst for enhanced photosensitization efficiency. Applied Catalysis B: Environmental, 2018, 233, 11-18.	20.2	112
7	Hybridization of graphene oxide with commercial graphene for constructing 3D metal-free aerogel with enhanced photocatalysis. Applied Catalysis B: Environmental, 2018, 226, 16-22.	20.2	79
8	Earth-Abundant MoS ₂ and Cobalt Phosphate Dual Cocatalysts on 1D CdS Nanowires for Boosting Photocatalytic Hydrogen Production. Langmuir, 2019, 35, 11056-11065.	3.5	77
9	Roles of Graphene Oxide in Heterogeneous Photocatalysis. ACS Materials Au, 2021, 1, 37-54.	6.0	56
10	Rational utilization of highly conductive, commercial Elicarb graphene to advance the graphene-semiconductor composite photocatalysis. Applied Catalysis B: Environmental, 2018, 224, 424-432.	20.2	45
11	Insight into the Origin of Boosted Photosensitive Efficiency of Graphene from the Cooperative Experiment and Theory Study. Journal of Physical Chemistry C, 2016, 120, 27091-27103.	3.1	37
12	Insight into the Role of Size Modulation on Tuning the Band Gap and Photocatalytic Performance of Semiconducting Nitrogen-Doped Graphene. Langmuir, 2017, 33, 3161-3169.	3.5	36
13	Constructing film composites of silicon nanowires@CdS quantum dot arrays with ameliorated photocatalytic performance. New Journal of Chemistry, 2018, 42, 14096-14103.	2.8	18
14	Silicon nanowires@Co3O4 arrays film with Z‑scheme band alignment for hydrogen evolution. Catalysis Today, 2019, 335, 294-299.	4.4	18
15	Recent advances of nickel hydroxide-based cocatalysts in heterogeneous photocatalysis. Catalysis Communications, 2022, 162, 106371.	3.3	18
16	Rationally designed Sb2S3/PDI composites with enhanced visible light photoactivity. Catalysis Communications, 2022, 162, 106368.	3.3	15