Tymish Y Ohulchanskyy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5770563/publications.pdf

Version: 2024-02-01

159 papers 14,706 citations

53 h-index 120 g-index

161 all docs

161 does citations

times ranked

161

15652 citing authors

#	Article	IF	CITATIONS
1	Ceramic-Based Nanoparticles Entrapping Water-Insoluble Photosensitizing Anticancer Drugs:Â A Novel Drugâ''Carrier System for Photodynamic Therapy. Journal of the American Chemical Society, 2003, 125, 7860-7865.	13.7	885
2	High Contrast in Vitro and in Vivo Photoluminescence Bioimaging Using Near Infrared to Near Infrared Up-Conversion in Tm ³⁺ and Yb ³⁺ Doped Fluoride Nanophosphors. Nano Letters, 2008, 8, 3834-3838.	9.1	874
3	Organically Modified Silica Nanoparticles Co-encapsulating Photosensitizing Drug and Aggregation-Enhanced Two-Photon Absorbing Fluorescent Dye Aggregates for Two-Photon Photodynamic Therapy. Journal of the American Chemical Society, 2007, 129, 2669-2675.	13.7	658
4	(α-NaYbF ₄ :Tm ³⁺)/CaF ₂ Core/Shell Nanoparticles with Efficient Near-Infrared to Near-Infrared Upconversion for High-Contrast Deep Tissue Bioimaging. ACS Nano, 2012, 6, 8280-8287.	14.6	647
5	Combined Optical and MR Bioimaging Using Rare Earth Ion Doped NaYF ₄ Nanocrystals. Advanced Functional Materials, 2009, 19, 853-859.	14.9	609
6	A General Approach to Binary and Ternary Hybrid Nanocrystals. Nano Letters, 2006, 6, 875-881.	9.1	593
7	Ultrasmall Monodisperse NaYF ₄ :Yb ³⁺ /Tm ³⁺ Nanocrystals with Enhanced Near-Infrared to Near-Infrared Upconversion Photoluminescence. ACS Nano, 2010, 4, 3163-3168.	14.6	586
8	<i>In Vivo</i> Biodistribution and Clearance Studies Using Multimodal Organically Modified Silica Nanoparticles. ACS Nano, 2010, 4, 699-708.	14.6	500
9	Light upconverting core–shell nanostructures: nanophotonic control for emerging applications. Chemical Society Reviews, 2015, 44, 1680-1713.	38.1	483
10	Optical tracking of organically modified silica nanoparticles as DNA carriers: A nonviral, nanomedicine approach for gene delivery. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 279-284.	7.1	436
11	Core/Shell NaGdF ₄ :Nd ³⁺ /NaGdF ₄ Nanocrystals with Efficient Near-Infrared to Near-Infrared Downconversion Photoluminescence for Bioimaging Applications. ACS Nano, 2012, 6, 2969-2977.	14.6	403
12	Aqueous Ferrofluid of Magnetite Nanoparticles:Â Fluorescence Labeling and Magnetophoretic Control. Journal of Physical Chemistry B, 2005, 109, 3879-3885.	2.6	387
13	Intense Visible and Near-Infrared Upconversion Photoluminescence in Colloidal LiYF ₄ :Er ³⁺ Nanocrystals under Excitation at 1490 nm. ACS Nano, 2011, 5, 4981-4986.	14.6	348
14	Energy-Cascaded Upconversion in an Organic Dye-Sensitized Core/Shell Fluoride Nanocrystal. Nano Letters, 2015, 15, 7400-7407.	9.1	341
15	Photoluminescent Carbon Dots as Biocompatible Nanoprobes for Targeting Cancer Cells <i>iin Vitro</i> . Journal of Physical Chemistry C, 2010, 114, 12062-12068.	3.1	318
16	Tunable Narrow Band Emissions from Dye-Sensitized Core/Shell/Shell Nanocrystals in the Second Near-Infrared Biological Window. Journal of the American Chemical Society, 2016, 138, 16192-16195.	13.7	314
17	Organically Modified Silica Nanoparticles with Covalently Incorporated Photosensitizer for Photodynamic Therapy of Cancer. Nano Letters, 2007, 7, 2835-2842.	9.1	311
18	Dye-sensitized lanthanide-doped upconversion nanoparticles. Chemical Society Reviews, 2017, 46, 4150-4167.	38.1	281

#	Article	IF	CITATIONS
19	Covalently Dye-Linked, Surface-Controlled, and Bioconjugated Organically Modified Silica Nanoparticles as Targeted Probes for Optical Imaging. ACS Nano, 2008, 2, 449-456.	14.6	274
20	Singlet Oxygen Generation via Two-Photon Excited FRET. Journal of the American Chemical Society, 2004, 126, 5380-5381.	13.7	228
21	Photodynamic therapy by in situ nonlinear photon conversion. Nature Photonics, 2014, 8, 455-461.	31.4	192
22	Photosensitization of Singlet Oxygen via Two-Photon-Excited Fluorescence Resonance Energy Transfer in a Water-Soluble Dendrimer. Chemistry of Materials, 2005, 17, 2267-2275.	6.7	184
23	Upconversion: Tunable Near Infrared to Ultraviolet Upconversion Luminescence Enhancement in (αâ€NaYF ₄ :Yb,Tm)/CaF ₂ Core/Shell Nanoparticles for In situ Realâ€time Recorded Biocompatible Photoactivation (Small 19/2013). Small, 2013, 9, 3212-3212.	10.0	182
24	Monodisperse NaYbF4 : Tm3+/NaGdF4 core/shell nanocrystals with near-infrared to near-infrared upconversion photoluminescence and magnetic resonance properties. Nanoscale, 2011, 3, 2003.	5.6	170
25	Fluorogenic, Two-Photon-Triggered Photoclick Chemistry in Live Mammalian Cells. Journal of the American Chemical Society, 2013, 135, 16766-16769.	13.7	142
26	Optical windows for head tissues in nearâ€infrared and shortâ€wave infrared regions: Approaching transcranial light applications. Journal of Biophotonics, 2018, 11, e201800141.	2.3	128
27	Evaluation of Polymethine Dyes as Potential Probes for Near Infrared Fluorescence Imaging of Tumors: Part - 1. Theranostics, 2013, 3, 692-702.	10.0	122
28	Lanthanideâ€Doped Nearâ€Infrared Nanoparticles for Biophotonics. Advanced Materials, 2021, 33, e2000678.	21.0	113
29	Light-Harvesting Chromophores with Metalated Porphyrin Cores for Tuned Photosensitization of Singlet Oxygen via Two-Photon Excited FRET. Chemistry of Materials, 2006, 18, 3682-3692.	6.7	112
30	Diacyllipid Micelle-Based Nanocarrier for Magnetically Guided Delivery of Drugs in Photodynamic Therapy. Molecular Pharmaceutics, 2006, 3, 415-423.	4.6	111
31	Heteroatom Substitution Induced Changes in Excited-State Photophysics and Singlet Oxygen Generation in Chalcogenoxanthylium Dyes: Effect of Sulfur and Selenium Substitutionsâ€. Journal of Physical Chemistry B, 2004, 108, 8668-8672.	2.6	110
32	New Method for Delivering a Hydrophobic Drug for Photodynamic Therapy Using Pure Nanocrystal Form of the Drug. Molecular Pharmaceutics, 2007, 4, 289-297.	4.6	109
33	Imaging Pancreatic Cancer Using Surface-Functionalized Quantum Dots. Journal of Physical Chemistry B, 2007, 111, 6969-6972.	2.6	106
34	Recent Progress in Upconversion Photodynamic Therapy. Nanomaterials, 2018, 8, 344.	4.1	106
35	Efficient photoconductive devices at infrared wavelengths using quantum dot-polymer nanocomposites. Applied Physics Letters, 2005, 87, 073110.	3.3	105
36	Efficient Broadband Upconversion of Nearâ€Infrared Light in Dyeâ€Sensitized Core/Shell Nanocrystals. Advanced Optical Materials, 2016, 4, 1760-1766.	7.3	104

#	Article	IF	Citations
37	Use of colloidal upconversion nanocrystals for energy relay solar cell light harvesting in the near-infrared region. Journal of Materials Chemistry, 2012, 22, 16709.	6.7	101
38	Synthesis, properties, and photodynamic properties in vitro of heavy-chalcogen analogues of tetramethylrosamine. Bioorganic and Medicinal Chemistry, 2004, 12, 2537-2544.	3.0	97
39	Efficient Photodetection at IR Wavelengths by Incorporation of PbSe–Carbon-Nanotube Conjugates in a Polymeric Nanocomposite. Advanced Materials, 2007, 19, 232-236.	21.0	97
40	A Novel Approach to a Bifunctional Photosensitizer for Tumor Imaging and Phototherapy. Bioconjugate Chemistry, 2005, 16, 1264-1274.	3.6	90
41	Core-modified porphyrins. Part 4: Steric effects on photophysical and biological properties in vitro. Bioorganic and Medicinal Chemistry, 2005, 13, 2235-2251.	3.0	88
42	Water Soluble, Core-Modified Porphyrins. 3. Synthesis, Photophysical Properties, and in Vitro Studies of Photosensitization, Uptake, and Localization with Carboxylic Acid-Substituted Derivatives. Journal of Medicinal Chemistry, 2003, 46, 3734-3747.	6.4	85
43	Near-Infrared Phosphorescent Polymeric Nanomicelles: Efficient Optical Probes for Tumor Imaging and Detection. ACS Applied Materials & Samp; Interfaces, 2009, 1, 1474-1481.	8.0	81
44	Efficient Erbiumâ€Sensitized Core/Shell Nanocrystals for Short Wave Infrared Bioimaging. Advanced Optical Materials, 2018, 6, 1800690.	7.3	80
45	Highly Effective Dual-Function Near-Infrared (NIR) Photosensitizer for Fluorescence Imaging and Photodynamic Therapy (PDT) of Cancer. Journal of Medicinal Chemistry, 2016, 59, 9774-9787.	6.4	77
46	Organically Modified Silica Nanoparticles with Intraparticle Heavy-Atom Effect on the Encapsulated Photosensitizer for Enhanced Efficacy of Photodynamic Therapy. Journal of Physical Chemistry C, 2009, 113, 12641-12644.	3.1	74
47	Tunable Near Infrared to Ultraviolet Upconversion Luminescence Enhancement in (αâ€NaYF ₄ :Yb,Tm)/CaF ₂ Core/Shell Nanoparticles for In situ Realâ€time Recorded Biocompatible Photoactivation. Small, 2013, 9, 3213-3217.	10.0	69
48	Facile Synthesis and Potential Bioimaging Applications of Hybrid Upconverting and Plasmonic NaGdF ₄ : Yb ³⁺ , Er ³⁺ /Silica/Gold Nanoparticles. Theranostics, 2013, 3, 275-281.	10.0	67
49	Nanoliposomes Co-Encapsulating CT Imaging Contrast Agent and Photosensitizer for Enhanced, Imaging Guided Photodynamic Therapy of Cancer. Theranostics, 2019, 9, 1323-1335.	10.0	64
50	Water-Soluble Two-Photon Absorbing Nitrosyl Complex for Light-Activated Therapy through Nitric Oxide Release. Molecular Pharmaceutics, 2008, 5, 389-398.	4.6	59
51	Inhibiting tumor oxygen metabolism and simultaneously generating oxygen by intelligent upconversion nanotherapeutics for enhanced photodynamic therapy. Biomaterials, 2020, 251, 120088.	11.4	58
52	Multifunctional nanoplatforms for fluorescence imaging and photodynamic therapy developed by post-loading photosensitizer and fluorophore to polyacrylamide nanoparticles. Nanomedicine: Nanotechnology, Biology, and Medicine, 2012, 8, 941-950.	3.3	57
53	Interactions of cyanine dyes with nucleic acids. XXIV. Aggregation of monomethine cyanine dyes in presence of DNA and its manifestation in absorption and fluorescence spectra. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2001, 57, 1525-1532.	3.9	53
54	Selenorhodamine Photosensitizers for Photodynamic Therapy of P-Glycoprotein-Expressing Cancer Cells. Journal of Medicinal Chemistry, 2014, 57, 8622-8634.	6.4	53

#	Article	IF	CITATIONS
55	Synthesis and Properties of Heavy Chalcogen Analogues of the Texas Reds and Related Rhodamines. Organometallics, 2014, 33, 2628-2640.	2.3	52
56	Subcellular Optogenetics Enacted by Targeted Nanotransformers of Near-Infrared Light. ACS Photonics, 2017, 4, 806-814.	6.6	52
57	Structureâ^'Activity Relationship Among Purpurinimides and Bacteriopurpurinimides:Â Trifluoromethyl Substituent Enhanced the Photosensitizing Efficacy. Journal of Medicinal Chemistry, 2007, 50, 1754-1767.	6.4	51
58	Fluorescence Lifetime of Fluorescent Proteins as an Intracellular Environment Probe Sensing the Cell Cycle Progression. ACS Chemical Biology, 2012, 7, 1385-1392.	3.4	51
59	Enhanced upconversion emission in colloidal (NaYF_4:Er^3+)/NaYF_4  core/shell nanoparticles excited at 1523Ânm. Optics Letters, 2014, 39, 1386.	3.3	51
60	Lanthanideâ€Doped Fluoride Core/Multishell Nanoparticles for Broadband Upconversion of Infrared Light. Advanced Optical Materials, 2015, 3, 575-582.	7.3	50
61	Interaction of cyanine dyes with nucleic acids. XXI. Arguments for half-intercalation model of interaction. Biopolymers, 2001, 62, 219-227.	2.4	48
62	Pdâ€Porphyrinâ€Crossâ€Linked Implantable Hydrogels with Oxygenâ€Responsive Phosphorescence. Advanced Healthcare Materials, 2014, 3, 891-896.	7.6	46
63	Interaction of cyanine dyes with nucleic acids. XVII. Towards an aggregation of cyanine dyes in solutions as a factor facilitating nucleic acid detection. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2000, 56, 805-814.	3.9	42
64	Self-organization C60 nanoparticles in toluene solution. Journal of Molecular Liquids, 2001, 93, 187-191.	4.9	38
65	Organotellurium Fluorescence Probes for Redox Reactions: 9-Aryl-3,6-diaminotelluroxanthylium Dyes and Their Telluroxides. Organometallics, 2013, 32, 4321-4333.	2.3	38
66	Comparative Tumor Imaging and PDT Efficacy of HPPH Conjugated in the Mono- and Di-Forms to Various Polymethine Cyanine Dyes: Part - 2. Theranostics, 2013, 3, 703-718.	10.0	38
67	Photosensitizers Derived from 132-Oxo-methyl Pyropheophorbide-a: Enhanced Effect of Indium(III) as a Central Metal in In Vitro and In Vivo Photosensitizing Efficacy. Photochemistry and Photobiology, 2006, 82, 626.	2.5	37
68	A Monomethine Cyanine Dye Cyan 40 for Two-photon–excited Fluorescence Detection of Nucleic Acids and Their Visualization in Live Cells¶. Photochemistry and Photobiology, 2003, 77, 138.	2.5	36
69	In Vivo Stability and Photodynamic Efficacy of Fluorinated Bacteriopurpurinimides Derived from Bacteriochlorophyll-a. Journal of Medicinal Chemistry, 2006, 49, 1874-1881.	6.4	35
70	Interaction of cyanine dyes with nucleic acids. XVIII. Formation of the carbocyanine dye J-aggregates in nucleic acid grooves. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2001, 57, 2705-2715.	3.9	34
71	Catalase Nanocrystals Loaded with Methylene Blue as Oxygen Selfâ€6upplied, Imagingâ€Guided Platform for Photodynamic Therapy of Hypoxic Tumors. Small, 2021, 17, e2103569.	10.0	34
72	Water-Dispersible Polymeric Structure Co-encapsulating a Novel Hexa- <i>peri</i> -hexabenzocoronene Core Containing Chromophore with Enhanced Two-Photon Absorption and Magnetic Nanoparticles for Magnetically Guided Two-Photon Cellular Imaging. Journal of Physical Chemistry C, 2007, 111, 16846-16851.	3.1	33

#	Article	IF	CITATIONS
73	Highâ€resolution light microscopy using luminescent nanoparticles. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2010, 2, 162-175.	6.1	33
74	Red and near-infrared light evokes Ca2+ influx, endoplasmic reticulum release and membrane depolarization in neurons and cancer cells. Journal of Photochemistry and Photobiology B: Biology, 2021, 214, 112088.	3.8	33
75	Theoretical predictions and experimental studies of self-organized C60 nanoparticles in water solution and on the support. European Physical Journal D, 1999, 9, 341-343.	1.3	32
76	Synergy of Chemo- and Photodynamic Therapies with C60 Fullerene-Doxorubicin Nanocomplex. Nanomaterials, 2019, 9, 1540.	4.1	32
77	Core–shell polymeric nanoparticles co-loaded with photosensitizer and organic dye for photodynamic therapy guided by fluorescence imaging in near and short-wave infrared spectral regions. Journal of Nanobiotechnology, 2020, 18, 19.	9.1	31
78	Ormosil nanoparticles as a sustained-release drug delivery vehicle. RSC Advances, 2014, 4, 53498-53504.	3.6	30
79	Styryl Dyes as Two-Photon Excited Fluorescent Probes for DNA Detection and Two-Photon Laser Scanning Fluorescence Microscopy of Living Cells. Journal of Fluorescence, 2010, 20, 865-872.	2.5	27
80	Phospholipid micelle-based magneto-plasmonic nanoformulation for magnetic field-directed, imaging-guided photo-induced cancer therapy. Nanomedicine: Nanotechnology, Biology, and Medicine, 2013, 9, 1192-1202.	3.3	26
81	A core–multiple shell nanostructure enabling concurrent upconversion and quantum cutting for photon management. Nanoscale, 2017, 9, 1934-1941.	5.6	26
82	Cycles of protein condensation and discharge in nuclear organelles studied by fluorescence lifetime imaging. Nature Communications, 2019, 10, 455.	12.8	26
83	Red and nearâ€infrared light induces intracellular Ca ^{2+} flux via the activation of glutamate <i>N</i> à€methylâ€Dâ€aspartate receptors. Journal of Cellular Physiology, 2019, 234, 15989-16002.	4.1	26
84	An all-graphene quantum dot Förster resonance energy transfer (FRET) probe for ratiometric detection of HE4 ovarian cancer biomarker. Colloids and Surfaces B: Biointerfaces, 2021, 198, 111458.	5.0	26
85	The nature of the electronic excitations capturing centres in the DNA. Journal of Molecular Liquids, 2006, 127, 79-83.	4.9	25
86	Synthesis and nanoparticle encapsulation of 3,5-difuranylvinyl-boradiaza-s-indacenes for near-infrared fluorescence imaging. Journal of Materials Chemistry, 2009, 19, 3181.	6.7	25
87	In-situ second harmonic generation by cancer cell targeting ZnO nanocrystals to effect photodynamic action in subcellular space. Biomaterials, 2016, 104, 78-86.	11.4	25
88	Structure–activity studies of uptake and phototoxicity with heavy-chalcogen analogues of tetramethylrosamine in vitro in chemosensitive and multidrug-resistant cells. Bioorganic and Medicinal Chemistry, 2005, 13, 6394-6403.	3.0	24
89	Synthesis of analogues of a flexible thiopyrylium photosensitizer for purging blood-borne pathogens and binding mode and affinity studies of their complexes with DNA. Bioorganic and Medicinal Chemistry, 2007, 15, 4406-4418.	3.0	24
90	<italic>In situ</italic> gold nanoparticles formation: contrast agent for dental optical coherence tomography. Journal of Biomedical Optics, 2012, 17, 066003.	2.6	24

#	Article	IF	CITATIONS
91	Combined magnetic resonance and optical imaging of head and neck tumor xenografts using Gadolinium-labelled phosphorescent polymeric nanomicelles. Head & Neck Oncology, 2010, 2, 35.	2.3	23
92	Importance of Singlet Oxygen in Photocatalytic Reactions of 2-Aryl-1,2,3,4-tetrahydroisoquinolines Using Chalcogenorosamine Photocatalysts. Organometallics, 2019, 38, 2431-2442.	2.3	23
93	Photosensitizer (PS)-cyanine dye (CD) conjugates: Impact of the linkers joining the PS and CD moieties and their orientation in tumor-uptake and photodynamic therapy (PDT). European Journal of Medicinal Chemistry, 2016, 122, 770-785.	5.5	22
94	Near-infrared light reduces β-amyloid-stimulated microglial toxicity and enhances survival of neurons: mechanisms of light therapy for Alzheimer's disease. Alzheimer's Research and Therapy, 2022, 14, .	6.2	22
95	Multifunctional Magneto-Plasmonic Fe3O4/Au Nanocomposites: Approaching Magnetophoretically-Enhanced Photothermal Therapy. Nanomaterials, 2021, 11, 1113.	4.1	21
96	"Switched-On―Flexible Chalcogenopyrylium Photosensitizers. Changes in Photophysical Properties upon Binding to DNA. Journal of Physical Chemistry B, 2007, 111, 9686-9692.	2.6	20
97	Structural and Epimeric Isomers of HPPH [3-Devinyl 3-{1-(1-hexyloxy) ethyl}pyropheophorbide-a]: Effects on Uptake and Photodynamic Therapy of Cancer. ACS Chemical Biology, 2017, 12, 933-946.	3.4	20
98	Selenorhodamine photosensitizers with the Texas-red core for photodynamic therapy of cancer cells. Bioorganic and Medicinal Chemistry, 2015, 23, 4501-4507.	3.0	19
99	Hyperspectral Multiplexed Biological Imaging of Nanoprobes Emitting in the Short-Wave Infrared Region. Nanoscale Research Letters, 2019, 14, 243.	5.7	18
100	Low-bandgap biophotonic nanoblend: A platform for systemic disease targeting and functional imaging. Biomaterials, 2015, 39, 225-233.	11.4	17
101	Comparative Study of Photoelectric Properties of Metamorphic InAs/InGaAs and InAs/GaAs Quantum Dot Structures. Nanoscale Research Letters, 2017, 12, 335.	5.7	17
102	Noninvasive Temperature Measurement in Dental Materials Using Nd ³⁺ , Yb ³⁺ Doped Nanoparticles Emitting in the Near Infrared Region. Particle and Particle Systems Characterization, 2020, 37, 1900445.	2.3	17
103	Tumor-Microenvironment-Activated NIR-II Nanotheranostic Platform for Precise Diagnosis and Treatment of Colon Cancer. ACS Applied Materials & Samp; Interfaces, 2022, 14, 23206-23218.	8.0	17
104	Polymeric Nanocomposites Involving a Physical Blend of IR Sensitive Quantum Dots and Carbon Nanotubes for Photodetection. Journal of Physical Chemistry C, 2010, 114, 3180-3184.	3.1	16
105	Regioselective Synthesis and Photophysical and Electrochemical Studies of 20â€5ubstituted Cyanine Dye–Purpurinimide Conjugates: Incorporation of Ni ^{II} into the Conjugate Enhances its Tumorâ€Uptake and Fluorescenceâ€Imaging Ability. Chemistry - A European Journal, 2013, 19, 6670-6684.	3.3	16
106	Interaction of cyanine dyes with nucleic acids. XXV. Influence of affinity-modifying groups in the structure of benzothiazol-4-[2,6-dimethylpyridinium] dyes on the spectral properties of the dyes in the presence of nucleic acids. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2001, 57, 1533-1540.	3.9	15
107	Real-Time Imaging of Short-Wave Infrared Luminescence Lifetimes for Anti-counterfeiting Applications. Frontiers in Chemistry, 2021, 9, 659553.	3.6	12
108	Red and near infrared light-stimulated angiogenesis mediated via Ca2+ influx, VEGF production and NO synthesis in endothelial cells in macrophage or malignant environments. Journal of Photochemistry and Photobiology B: Biology, 2022, 227, 112388.	3.8	11

#	Article	IF	CITATIONS
109	Synthesis and spectral investigation of alkyl methacrylates with halogenated carbazolyl pendant groups for photonics applications. Journal of Applied Polymer Science, 2002, 84, 1650-1656.	2.6	10
110	Co-encapsulating indocyanine green and CT contrast agent within nanoliposomes for trimodal imaging and near infrared phototherapy of cancer. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 29, 102269.	3.3	10
111	Optical Imaging of Beta-Amyloid Plaques in Alzheimer's Disease. Biosensors, 2021, 11, 255.	4.7	10
112	Effect of NIR light on the permeability of the blood-brain barriers in in vitro models. Biomedical Optics Express, 2021, 12, 7544.	2.9	10
113	Water-Soluble Porphyrin-Polyethylene Glycol Conjugates with Enhanced Cellular Uptake for Photodynamic Therapy. Journal of Nanoscience and Nanotechnology, 2009, 9, 7130-5.	0.9	9
114	Impact of Substituents in Tumor Uptake and Fluorescence Imaging Ability of Nearâ€Infrared Cyanineâ€Iike Dyes. Photochemistry and Photobiology, 2015, 91, 1219-1230.	2.5	9
115	Near-Infrared Irradiation Affects Lipid Metabolism in Neuronal Cells, Inducing Lipid Droplets Formation. ACS Chemical Neuroscience, 2019, 10, 1517-1523.	3.5	9
116	In Situ Ultraviolet Polymerization Using Upconversion Nanoparticles: Nanocomposite Structures Patterned by Near Infrared Light. Nanomaterials, 2020, 10, 2054.	4.1	9
117	Excretable, ultrasmall hexagonal NaGdF4:Yb50% nanoparticles for bimodal imaging and radiosensitization. Cancer Nanotechnology, 2021, 12, 4.	3.7	9
118	Organically modified silica nanoparticles as drug delivery vehicles in photodynamic therapy. Journal of Porphyrins and Phthalocyanines, 2011, 15, 401-411.	0.8	8
119	Peripheral N-methyl-D-aspartate receptor localization and role in gastric acid secretion regulation: immunofluorescence and pharmacological studies. Scientific Reports, 2018, 8, 7445.	3.3	8
120	Dose–effect relationships for PBM in the treatment of Alzheimer's disease. Journal Physics D: Applied Physics, 2021, 54, 353001.	2.8	8
121	Two-photon fluorescence-guided laser tweezers for study of cluster growth and gelation process. Applied Physics Letters, 2004, 84, 2454-2456.	3.3	7
122	Bipolar Effects in Photovoltage of Metamorphic InAs/InGaAs/GaAs Quantum Dot Heterostructures: Characterization and Design Solutions for Light-Sensitive Devices. Nanoscale Research Letters, 2017, 12, 559.	5.7	7
123	Cellular transformations in nearâ€infrared lightâ€induced apoptosis in cancer cells revealed by labelâ€free CARS imaging. Journal of Biophotonics, 2019, 12, e201900179.	2.3	7
124	Macrophages Modulated by Red/NIR Light: Phagocytosis, Cytokines, Mitochondrial Activity, Ca ²⁺ Influx, Membrane Depolarization and Viability. Photochemistry and Photobiology, 2022, 98, 484-497.	2.5	7
125	Photoacoustic visualization of the fluence rate dependence of photodynamic therapy. Biomedical Optics Express, 2020, 11, 4203.	2.9	7
126	A Pyropheophorbide Analogue Containing a Fused Methoxy Cyclohexenone Ring System Shows Promising Cancerâ€Imaging Ability. ChemMedChem, 2019, 14, 1503-1513.	3.2	6

#	Article	IF	Citations
127	Thermosensitive ternary core–shell nanocomposites of polystyrene, poly(N-isopropylacrylamide) and polyaniline. Applied Nanoscience (Switzerland), 2020, 10, 4951-4964.	3.1	6
128	<scp>TiO₂</scp> â€coated fluoride nanoparticles for dental multimodal optical imaging. Journal of Biophotonics, 2018, 11, e201700029.	2.3	5
129	Charged groups on pyropheophorbide-based photosensitizers dictate uptake by tumor cells and photodynamic therapy efficacy. Journal of Photochemistry and Photobiology B: Biology, 2022, 227, 112375.	3.8	5
130	Morphoâ€Functional Characteristics of Bone Marrow Multipotent Mesenchymal Stromal Cells after Activation or Inhibition of Epidermal Growth Factor and Tollâ€Like Receptors or Treatment with DNA Intercalator Cisplatin. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2019, 95, 24-33.	1.5	4
131	The optical biomedical sensors for DNA detection and imaging based on two-photon excited luminescent styryl dyes: phototoxic influence on the DNA. Proceedings of SPIE, 2007, , .	0.8	3
132	Polymeric Nanoparticles Loaded with Organic Dye for Optical Bioimaging in Near-Infrared Range. , 2017, , .		3
133	Biophotonics: Harnessing Light for Biology and Medicine. NATO Science for Peace and Security Series B: Physics and Biophysics, 2011, , 3-17.	0.3	3
134	Novel Hybrid Compound 4-[(E)-2-phenylethenesulfonamido]-N-hydroxybutanamide with Antimetastatic and Cytotoxic Action: Synthesis and Anticancer Screening. Anti-Cancer Agents in Medicinal Chemistry, 2019, 18, 1495-1504.	1.7	3
135	NMDA receptor expression during cell transformation process at early stages of liver cancer in rodent models. American Journal of Physiology - Renal Physiology, 2022, 322, G142-G153.	3.4	3
136	Some functional macromolecules as exciton converters. , 1996, , .		2
137	Infrared Emitting Dye and/or Two Photon Excitable Fluorescent Dye Encapsulated in Biodegradable Polymer Nanoparticles for Bioimaging. Materials Research Society Symposia Proceedings, 2004, 845, 315.	0.1	2
138	Optical transparence windows for head tissues in near and short-wave infrared regions. , 2017, , .		2
139	A Monomethine Cyanine Dye Cyan 40 for Two-photon-excited Fluorescence Detection of Nucleic Acids and Their Visualization in Live Cells¶. Photochemistry and Photobiology, 2007, 77, 138-145.	2.5	1
140	Targeting T Cell Bioenergetics by Modulating P-Glycoprotein Selectively Depletes Alloreactive T Cells To Prevent Graft-versus-Host Disease. Journal of Immunology, 2016, 197, 1631-1641.	0.8	1
141	Some peculiarities of electronic and vibronic excitations transfer in organic media and hybrid nanosystems. Molecular Crystals and Liquid Crystals, 2020, 696, 3-14.	0.9	1
142	Hyperspectral imaging of rare-earth doped nanoparticles emitting in near- and short-wave infrared regions. , $2018, $, .		1
143	Catalase Nanocrystals Loaded with Methylene Blue as Oxygen Selfâ€Supplied, Imagingâ€Guided Platform for Photodynamic Therapy of Hypoxic Tumors (Small 41/2021). Small, 2021, 17, 2170216.	10.0	1
144	LED-based portable light source for photodynamic therapy. , 2019, , .		1

#	Article	IF	CITATIONS
145	Laser tweezer technique for study of gelation process. Proceedings of SPIE, 2005, 5736, 54.	0.8	O
146	Photodetection and Photovoltaic Properties of Polymer Composite Materials Based on Pentacene and Carbon Nanotube. LEOS Summer Topical Meeting, 2007, , .	0.0	0
147	Multifunctional ORMOSIL and PAA nanoparticles. , 2009, , .		O
148	Hydrogels: Pd-Porphyrin-Cross-Linked Implantable Hydrogels with Oxygen-Responsive Phosphorescence (Adv. Healthcare Mater. 6/2014). Advanced Healthcare Materials, 2014, 3, 890-890.	7.6	0
149	Targeting T Cell Bioenergetics by Modulating P-Glycoprotein Improves Selectivity of Phototherapy. Biology of Blood and Marrow Transplantation, 2016, 22, S89-S90.	2.0	O
150	Towards Optical Bioimaging in Near and Short-wave Infrared Regions: Contrast Agents and Optical Properties of Biological Tissue., 2017,,.		0
151	Nanoliposomes for photodynamic therapy guided by fluorescence and computed tomography imaging. , 2017, , .		0
152	Study on Cell Cycle Using Fluorescence Lifetime Imaging Microscopic System Based on a Streak Camera. Zhongguo Jiguang/Chinese Journal of Lasers, 2011, 38, 0304002.	1.2	0
153	P-Glycoprotein Modulation Facilitates the Selective Inhibition of Oxidative Phosphorylation in Alloreactive T Cells to Prevent Graft-Versus-Host Disease after Hematopoietic Stem Cell Transplant. Blood, 2015, 126, 1879-1879.	1.4	0
154	Combining optical imaging and pharmacological methods to localize N-methyl-D-aspartate glutamate receptors in a stomach wall. , 2017, , .		0
155	Differentiation of intradermal nevus and dermis by laser-induced breakdown spectroscopy. Shenzhen Daxue Xuebao (Ligong Ban)/Journal of Shenzhen University Science and Engineering, 2018, 35, 511.	0.2	0
156	Nanoscopic optical imaging: Temporal resolution, new materials, and biological applications (Conference Presentation)., 2019,,.		0
157	Time-gated and lifetime-unmixed imaging of near- and short wave infrared photoluminescence from rare-earth ion doped nanoparticles. , 2019 , , .		0
158	Label-Free Imaging of \hat{I}^2 -Amyloid Plaques and Photodynamic Degradation. Zhongguo Jiguang/Chinese Journal of Lasers, 2020, 47, 0207029.	1.2	0
159	Near-infrared phototheranostics: optical imaging and light induced therapy (Conference) Tj ETQq1 1 0.784314 r	gBT /Overl	ock 10 Tf 50