
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5770454/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                             | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | "APEC Blue†Secondary Aerosol Reductions from Emission Controls in Beijing. Scientific Reports, 2016, 6, 20668.                                                                                                                                      | 3.3  | 155       |
| 2  | Observations of the vertical distributions of summertime atmospheric pollutants and the<br>corresponding ozone productionÂinÂShanghai,ÂChina. Atmospheric Chemistry and Physics, 2017, 17,<br>14275-14289.                                          | 4.9  | 122       |
| 3  | Satellite UV-Vis spectroscopy: implications for air quality trends and their driving forces in China<br>during 2005–2017. Light: Science and Applications, 2019, 8, 100.                                                                            | 16.6 | 105       |
| 4  | Haze insights and mitigation in China: An overview. Journal of Environmental Sciences, 2014, 26, 2-12.                                                                                                                                              | 6.1  | 91        |
| 5  | Atmosphere boundary layer height and its effect on air pollutants in Beijing during winter heavy pollution. Atmospheric Research, 2019, 215, 305-316.                                                                                               | 4.1  | 79        |
| 6  | First observation of tropospheric nitrogen dioxide from the Environmental Trace Gases Monitoring<br>Instrument onboard the GaoFen-5 satellite. Light: Science and Applications, 2020, 9, 66.                                                        | 16.6 | 76        |
| 7  | Transcriptomic Analyses of the Biological Effects of Airborne PM2.5 Exposure on Human Bronchial<br>Epithelial Cells. PLoS ONE, 2015, 10, e0138267.                                                                                                  | 2.5  | 72        |
| 8  | Characterization of ozone in the lower troposphere during the 2016 G20 conference in Hangzhou.<br>Scientific Reports, 2017, 7, 17368.                                                                                                               | 3.3  | 67        |
| 9  | Primary and secondary sources of ambient formaldehyde in the Yangtze River Delta based on Ozone<br>Mapping and Profiler Suite (OMPS) observations. Atmospheric Chemistry and Physics, 2019, 19,<br>6717-6736.                                       | 4.9  | 60        |
| 10 | Identification of long-range transport pathways and potential sources of PM2.5 and PM10 in Beijing from 2014 to 2015. Journal of Environmental Sciences, 2017, 56, 214-229.                                                                         | 6.1  | 56        |
| 11 | Tropospheric NO <sub>2</sub> , SO <sub>2</sub> ,<br>and HCHO over the East China Sea, using ship-based MAX-DOAS observations and comparison with OMI<br>and OMPS satellite data. Atmospheric Chemistry and Physics, 2018, 18, 15387-15402.          | 4.9  | 49        |
| 12 | Label-free surface-sensitive photonic microscopy with high spatial resolution using azimuthal rotation illumination. Science Advances, 2019, 5, eaav5335.                                                                                           | 10.3 | 48        |
| 13 | Speciated atmospheric mercury on haze and non-haze days in an inland city in China. Atmospheric<br>Chemistry and Physics, 2016, 16, 13807-13821.                                                                                                    | 4.9  | 45        |
| 14 | Evolution of the vertical structure of air pollutants during winter heavy pollution episodes: The role of regional transport and potential sources. Atmospheric Research, 2019, 228, 206-222.                                                       | 4.1  | 45        |
| 15 | Identifying the wintertime sources of volatile organic compounds (VOCs) from MAX-DOAS measured formaldehyde and glyoxal in Chongqing, southwest China. Science of the Total Environment, 2020, 715, 136258.                                         | 8.0  | 45        |
| 16 | Investigating the performance of a greenhouse gas observatory in Hefei, China. Atmospheric<br>Measurement Techniques, 2017, 10, 2627-2643.                                                                                                          | 3.1  | 44        |
| 17 | Ozone seasonal evolution and photochemical production regime in the polluted troposphere in eastern China derived from high-resolution Fourier transform spectrometry (FTS) observations. Atmospheric Chemistry and Physics, 2018, 18, 14569-14583. | 4.9  | 42        |
| 18 | Characteristics of aerosol size distribution and vertical backscattering coefficient profile during 2014 APEC in Beijing. Atmospheric Environment, 2017, 148, 30-41.                                                                                | 4.1  | 40        |

| #  | Article                                                                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Observations of ozone vertical profiles and corresponding precursors in the low troposphere in Beijing, China. Atmospheric Research, 2018, 213, 224-235.                                                                                                                        | 4.1 | 40        |
| 20 | High-resolution vertical distribution and sources of HONO and<br>NO <sub>2</sub> in the nocturnal boundary layer in urban Beijing, China.<br>Atmospheric Chemistry and Physics, 2020, 20, 5071-5092.                                                                            | 4.9 | 40        |
| 21 | Ship-based MAX-DOAS measurements of tropospheric NO <sub>2</sub> ,<br>SO <sub>2</sub> , and HCHO distribution along the Yangtze River.<br>Atmospheric Chemistry and Physics, 2018, 18, 5931-5951.                                                                               | 4.9 | 38        |
| 22 | Optimal chlorophyll fluorescence parameter selection for rapid and sensitive detection of lead<br>toxicity to marine microalgae Nitzschia closterium based on chlorophyll fluorescence technology.<br>Journal of Photochemistry and Photobiology B: Biology, 2019, 197, 111551. | 3.8 | 38        |
| 23 | Full-circle range and microradian resolution angle measurement using the orthogonal mirror self-mixing interferometry. Optics Express, 2018, 26, 10371.                                                                                                                         | 3.4 | 37        |
| 24 | Ozone profile retrievals from TROPOMI: Implication for the variation of tropospheric ozone during the outbreak of COVID-19 in China. Science of the Total Environment, 2021, 764, 142886.                                                                                       | 8.0 | 34        |
| 25 | An improved TROPOMI tropospheric HCHO retrieval over China. Atmospheric Measurement<br>Techniques, 2020, 13, 6271-6292.                                                                                                                                                         | 3.1 | 34        |
| 26 | Characterization of temperature non-uniformity over a premixed CH4–air flame based on line-of-sight<br>TDLAS. Applied Physics B: Lasers and Optics, 2016, 122, 1.                                                                                                               | 2.2 | 33        |
| 27 | Investigations of temporal and spatial distribution of precursors<br>SO <sub>2</sub> and NO <sub>2</sub> vertical<br>columns in the North China Plain using mobile DOAS. Atmospheric Chemistry and Physics, 2018, 18,<br>1535-1554.                                             | 4.9 | 32        |
| 28 | FTIR time series of stratospheric NO <sub>2</sub> over Hefei, China, and comparisons with OMI and GEOS-Chem model data. Optics Express, 2019, 27, A1225.                                                                                                                        | 3.4 | 32        |
| 29 | Ground-based FTIR observation of hydrogen chloride (HCl) over Hefei, China, and comparisons with<br>GEOS-Chem model data and other ground-based FTIR stations data. Optics Express, 2020, 28, 8041.                                                                             | 3.4 | 29        |
| 30 | Haze observations by simultaneous lidar and WPS in Beijing before and during APEC, 2014. Science<br>China Chemistry, 2015, 58, 1385-1392.                                                                                                                                       | 8.2 | 25        |
| 31 | Preflight Evaluation of the Performance of the Chinese Environmental Trace Gas Monitoring<br>Instrument (EMI) by Spectral Analyses of Nitrogen Dioxide. IEEE Transactions on Geoscience and<br>Remote Sensing, 2018, 56, 3323-3332.                                             | 6.3 | 25        |
| 32 | Development of a field system for measurement of tropospheric OH radical using laser-induced fluorescence technique. Optics Express, 2019, 27, A419.                                                                                                                            | 3.4 | 25        |
| 33 | Remote open-path cavity-ringdown spectroscopic sensing of trace gases in air, based on distributed passive sensors linked by km-long optical fibers. Optics Express, 2014, 22, 13170.                                                                                           | 3.4 | 24        |
| 34 | Development of a portable cavity ring down spectroscopy instrument for simultaneous, in situ measurement of NO3 and N2O5. Optics Express, 2018, 26, A433.                                                                                                                       | 3.4 | 24        |
| 35 | A dual dynamic chamber system based on IBBCEAS for measuring fluxes of nitrous acid in agricultural fields in the North China Plain. Atmospheric Environment, 2019, 196, 10-19.                                                                                                 | 4.1 | 24        |
| 36 | Theoretical study of the red- and blue-shifted hydrogen bonds of nitroxyl and acetylene dimers.<br>International Journal of Quantum Chemistry, 2006, 106, 2122-2128.                                                                                                            | 2.0 | 23        |

| #  | Article                                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | A kinetic model for heterogeneous condensation of vapor on an insoluble spherical particle. Journal of Chemical Physics, 2014, 140, 024708.                                                                                                     | 3.0  | 23        |
| 38 | A new method to determine the aerosol optical properties from multiple-wavelength<br>O <sub>4</sub> absorptions by MAX-DOAS observation. Atmospheric<br>Measurement Techniques, 2019, 12, 3289-3302.                                            | 3.1  | 23        |
| 39 | Real-Time Measurement of the Hygroscopic Growth Dynamics of Single Aerosol Nanoparticles with<br>Bloch Surface Wave Microscopy. ACS Nano, 2020, 14, 9136-9144.                                                                                  | 14.6 | 23        |
| 40 | Determination of polycyclic aromatic hydrocarbons by four-way parallel factor analysis in presence<br>of humic acid. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2016, 152,<br>384-390.                              | 3.9  | 21        |
| 41 | Diode laser cavity ring-down spectroscopy for in situ measurement of NO3 radical in ambient air.<br>Journal of Quantitative Spectroscopy and Radiative Transfer, 2015, 166, 23-29.                                                              | 2.3  | 20        |
| 42 | Simultaneous measurement of NO and NO <sub>2</sub> by a dual-channel cavity ring-down spectroscopy technique. Atmospheric Measurement Techniques, 2019, 12, 3223-3236.                                                                          | 3.1  | 20        |
| 43 | Mapping the drivers of formaldehyde (HCHO) variability from 2015 to 2019 over eastern China: insights<br>from Fourier transform infrared observation and GEOS-Chem model simulation. Atmospheric<br>Chemistry and Physics, 2021, 21, 6365-6387. | 4.9  | 20        |
| 44 | The channel radius and energy of cloud-to-ground lightning discharge plasma with multiple return strokes. Physics of Plasmas, 2014, 21, 033503.                                                                                                 | 1.9  | 19        |
| 45 | The design of rapid turbidity measurement system based on single photon detection techniques. Optics<br>and Laser Technology, 2015, 73, 44-49.                                                                                                  | 4.6  | 19        |
| 46 | Comparison of mixing layer height inversion algorithms using lidar and a pollution case study in<br>Baoding, China. Journal of Environmental Sciences, 2019, 79, 81-90.                                                                         | 6.1  | 19        |
| 47 | Self-Mixing Fiber Ring Laser Velocimeter With Orthogonal-Beam Incident System. IEEE Photonics<br>Journal, 2014, 6, 1-11.                                                                                                                        | 2.0  | 18        |
| 48 | All-Fiber Configuration Laser Self-Mixing Doppler Velocimeter Based on Distributed Feedback Fiber<br>Laser. Sensors, 2016, 16, 1179.                                                                                                            | 3.8  | 18        |
| 49 | On-line analysis of algae in water by discrete three-dimensional fluorescence spectroscopy. Optics<br>Express, 2018, 26, A251.                                                                                                                  | 3.4  | 18        |
| 50 | Vertical distributions of wintertime atmospheric nitrogenous compounds and the corresponding OH radicals production in Leshan, southwest China. Journal of Environmental Sciences, 2021, 105, 44-55.                                            | 6.1  | 18        |
| 51 | A ultra-small-angle self-mixing sensor system with high detection resolution and wide measurement range. Optics and Laser Technology, 2017, 91, 92-97.                                                                                          | 4.6  | 17        |
| 52 | Fourier transform infrared time series of tropospheric HCN in eastern China: seasonality, interannual variability, and source attribution. Atmospheric Chemistry and Physics, 2020, 20, 5437-5456.                                              | 4.9  | 17        |
| 53 | Mercaptopropionic acid-capped Mn-doped ZnS quantum dots as a probe for selective room-temperature phosphorescence detection of Pb <sup>2+</sup> in water. New Journal of Chemistry, 2017, 41, 13425-13434.                                      | 2.8  | 16        |
| 54 | Estimation of winter time NOx emissions in Hefei, a typical inland city of China, using mobile MAX-DOAS observations. Atmospheric Environment, 2019, 200, 228-242.                                                                              | 4.1  | 16        |

| #  | Article                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Vertical distributions of tropospheric SO2 based on MAX-DOAS observations: Investigating the impacts of regional transport at different heights in the boundary layer. Journal of Environmental Sciences, 2021, 103, 119-134.                 | 6.1 | 16        |
| 56 | Lidar vertical observation network and data assimilation reveal key processes driving the 3-D dynamic<br>evolution of PM <sub>2.5</sub> concentrations over the North China<br>Plain. Atmospheric Chemistry and Physics, 2021, 21, 7023-7037. | 4.9 | 16        |
| 57 | Detection of heavy metals in water samples by laser-induced breakdown spectroscopy combined with annular groove graphite flakes. Plasma Science and Technology, 2019, 21, 034002.                                                             | 1.5 | 15        |
| 58 | Development of a laser heterodyne spectroradiometer for high-resolution measurements of<br>CO <sub>2</sub> , CH <sub>4</sub> , H <sub>2</sub> O and O <sub>2</sub> in the atmospheric column.<br>Optics Express, 2021, 29, 2003.              | 3.4 | 15        |
| 59 | Using Lidar technology to assess regional air pollution and improve estimates of PM <sub>2.5</sub><br>transport in the North China Plain. Environmental Research Letters, 2020, 15, 094071.                                                   | 5.2 | 15        |
| 60 | Intercomparison of NO x , SO2, O3, and aromatic hydrocarbons measured by a commercial DOAS system and traditional point monitoring techniques. Advances in Atmospheric Sciences, 2004, 21, 211-219.                                           | 4.3 | 14        |
| 61 | Observations of New Particle Formation, Subsequent Growth and Shrinkage during Summertime in<br>Beijing. Aerosol and Air Quality Research, 2016, 16, 1591-1602.                                                                               | 2.1 | 14        |
| 62 | Phytoplankton photosynthetic rate measurement using tunable pulsed light induced fluorescence kinetics. Optics Express, 2018, 26, A293.                                                                                                       | 3.4 | 14        |
| 63 | Elevated dust layers inhibit dissipation of heavy anthropogenic surface air pollution. Atmospheric<br>Chemistry and Physics, 2020, 20, 14917-14932.                                                                                           | 4.9 | 14        |
| 64 | Number size distribution of atmospheric particles in a suburban Beijing in the summer and winter of 2015. Atmospheric Environment, 2018, 186, 32-44.                                                                                          | 4.1 | 13        |
| 65 | Real-world gaseous emission characteristics of natural gas heavy-duty sanitation trucks. Journal of Environmental Sciences, 2022, 115, 319-329.                                                                                               | 6.1 | 13        |
| 66 | Vertical profile of aerosol number size distribution during a haze pollution episode in Hefei, China.<br>Science of the Total Environment, 2022, 814, 152693.                                                                                 | 8.0 | 13        |
| 67 | Scanning vertical distributions of typical aerosols along the Yangtze River using elastic lidar. Science of the Total Environment, 2018, 628-629, 631-641.                                                                                    | 8.0 | 12        |
| 68 | Retrieval of Global Carbon Dioxide From TanSat Satellite and Comprehensive Validation With TCCON<br>Measurements and Satellite Observations. IEEE Transactions on Geoscience and Remote Sensing, 2022,<br>60, 1-16.                           | 6.3 | 12        |
| 69 | Ammonium nitrate is a risk for environment: A case study of Beirut (Lebanon) chemical explosion and the effects on environment. Ecotoxicology and Environmental Safety, 2021, 210, 111834.                                                    | 6.0 | 12        |
| 70 | Calibration-free wavelength modulation spectroscopy for gas concentration measurements using a quantum cascade laser. Applied Physics B: Lasers and Optics, 2017, 123, 1.                                                                     | 2.2 | 11        |
| 71 | Emission Flux Measurement Error with a Mobile DOAS System and Application to NOx Flux Observations. Sensors, 2017, 17, 231.                                                                                                                   | 3.8 | 11        |
| 72 | Characterization of urban CO2 column abundance with a portable low resolution spectrometer<br>(PLRS): Comparisons with GOSAT and GEOS-Chem model data. Science of the Total Environment, 2018,<br>612, 1593-1609.                             | 8.0 | 11        |

| #  | Article                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Long-distance mobile MAX-DOAS observations of NO2 and SO2 over the North China Plain and<br>identification of regional transport and power plant emissions. Atmospheric Research, 2020, 245,<br>105037.                          | 4.1 | 11        |
| 74 | Vertical profile of aerosols in the Himalayas revealed by lidar: New insights into their seasonal/diurnal patterns, sources, and transport. Environmental Pollution, 2021, 285, 117686.                                          | 7.5 | 11        |
| 75 | Design and Evaluation of an Aerosol Electrometer with Low Noise and a Wide Dynamic Range. Sensors, 2018, 18, 1614.                                                                                                               | 3.8 | 10        |
| 76 | Validation of Water Vapor Vertical Distributions Retrieved from MAX-DOAS over Beijing, China.<br>Remote Sensing, 2020, 12, 3193.                                                                                                 | 4.0 | 10        |
| 77 | The Determination of Aerosol Distribution by a No-Blind-Zone Scanning Lidar. Remote Sensing, 2020, 12, 626.                                                                                                                      | 4.0 | 10        |
| 78 | <i>In Situ</i> Quantitative Observation of Hygroscopic Growth of Single Nanoparticle Aerosol by Surface Plasmon Resonance Microscopy. Analytical Chemistry, 2020, 92, 11062-11071.                                               | 6.5 | 10        |
| 79 | Quantifying variability, source, and transport of CO in the urban areas over the Himalayas and Tibetan<br>Plateau. Atmospheric Chemistry and Physics, 2021, 21, 9201-9222.                                                       | 4.9 | 10        |
| 80 | Aerosol Pollution Characterization before Chinese New Year in Zhengzhou in 2014. Aerosol and Air<br>Quality Research, 2019, 19, 1294-1306.                                                                                       | 2.1 | 10        |
| 81 | Blind separation of fluorescence spectra using sparse nonâ€negative matrix factorization on right hand factor. Journal of Chemometrics, 2015, 29, 442-447.                                                                       | 1.3 | 9         |
| 82 | On the Performance of an Aerosol Electrometer with Enhanced Detection Limit. Sensors, 2018, 18, 3889.                                                                                                                            | 3.8 | 9         |
| 83 | Characteristics and applications of near-infrared emissions from lightning. Journal of Applied Physics, 2013, 114, 163303.                                                                                                       | 2.5 | 8         |
| 84 | The Influence of Instrumental Line Shape Degradation on the Partial Columns of O3, CO,CH4 and N2O<br>Derived from High-Resolution FTIR spectrometry. Remote Sensing, 2018, 10, 2041.                                             | 4.0 | 8         |
| 85 | Measurement of tropospheric HO2 radical using fluorescence assay by gas expansion with low interferences. Journal of Environmental Sciences, 2021, 99, 40-50.                                                                    | 6.1 | 8         |
| 86 | A hydroxyl radical detection system using gas expansion and fast gating laser-induced fluorescence techniques. Journal of Environmental Sciences, 2018, 65, 190-200.                                                             | 6.1 | 7         |
| 87 | Design and evaluation of a unipolar aerosol particle charger with built-in electrostatic precipitator.<br>Instrumentation Science and Technology, 2018, 46, 326-347.                                                             | 1.8 | 7         |
| 88 | Development of a static test apparatus for evaluating the performance of three PM2.5 separators commonly used in China. Journal of Environmental Sciences, 2020, 87, 238-249.                                                    | 6.1 | 7         |
| 89 | An automated dynamic chamber system for exchange flux measurement of reactive nitrogen oxides<br>(HONO and NOX) in farmland ecosystems of the Huaihe River Basin, China. Science of the Total<br>Environment, 2020, 745, 140867. | 8.0 | 7         |
| 90 | Reconstruction of a leaking gas cloud from a passive FTIR scanning remote-sensing imaging system.<br>Applied Optics, 2021, 60, 9396.                                                                                             | 1.8 | 7         |

| #   | Article                                                                                                                                                                                                                                               | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Nocturnal atmospheric chemistry of NO3 and N2O5 over Changzhou in the Yangtze River Delta in<br>China. Journal of Environmental Sciences, 2022, 114, 376-390.                                                                                         | 6.1 | 7         |
| 92  | Measurement of HONO flux using the aerodynamic gradient method over an agricultural field in the<br>Huaihe River Basin, China. Journal of Environmental Sciences, 2022, 114, 297-307.                                                                 | 6.1 | 7         |
| 93  | Atmospheric Processing at the Seaâ€Land Interface Over the South China Sea: Secondary Aerosol<br>Formation, Aerosol Acidity, and Role of Sea Salts. Journal of Geophysical Research D: Atmospheres,<br>2022, 127, .                                   | 3.3 | 7         |
| 94  | Determination of Polycyclic Aromatic Hydrocarbons in the Presence of Humic Acid in water. Applied Spectroscopy, 2016, 70, 1520-1528.                                                                                                                  | 2.2 | 6         |
| 95  | Mercaptopropionic acid-capped Mn-doped ZnS quantum dots and Pb2+ as sensing system for rapid and sensitive room-temperature phosphorescence detection of sulfide in water. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 364, 88-96. | 3.9 | 6         |
| 96  | Simulation of three-stage operating temperature for supersaturation water-based condensational growth tube. Journal of Environmental Sciences, 2020, 90, 275-285.                                                                                     | 6.1 | 6         |
| 97  | Study on Mash Gas Monitoring with Distributed Multipoint Fiber Optic Sensors System in Coal Mine. , 2012, , .                                                                                                                                         |     | 5         |
| 98  | Remote sensing of chemical gas cloud emission by passive infrared scanning imaging system. , 2013, , .                                                                                                                                                |     | 5         |
| 99  | Simulation of Miniature PDMA for Ultrafine-Particle Measurement. Atmosphere, 2019, 10, 116.                                                                                                                                                           | 2.3 | 5         |
| 100 | Concentration Quantification of Oil Samples by Three-Dimensional Concentration-Emission Matrix<br>(CEM) Spectroscopy. Applied Sciences (Switzerland), 2020, 10, 315.                                                                                  | 2.5 | 5         |
| 101 | Development of a Laser Gas Analyzer for Fast CO2 and H2O Flux Measurements Utilizing Derivative Absorption Spectroscopy at a 100 Hz Data Rate. Sensors, 2021, 21, 3392.                                                                               | 3.8 | 5         |
| 102 | Simultaneous detection of heavy metals in solutions by electrodeposition assisted laser induced breakdown spectroscopy. Journal of Laser Applications, 2022, 34, 012021.                                                                              | 1.7 | 5         |
| 103 | Study on Physical Characteristics of a Bipolar Cloud-to-Ground Lightning Discharge Plasma. IEEE<br>Transactions on Plasma Science, 2015, 43, 851-856.                                                                                                 | 1.3 | 4         |
| 104 | Comparative study of cylindrical and parallelâ€plate electrophoretic separations for the removal of<br>ions and subâ€⊋3Ânm particles. Journal of Separation Science, 2017, 40, 4813-4824.                                                             | 2.5 | 4         |
| 105 | Development and Application of HECORA Cloud Retrieval Algorithm Based On the O2-O2 477 nm<br>Absorption Band. Remote Sensing, 2020, 12, 3039.                                                                                                         | 4.0 | 4         |
| 106 | A Build-In Data Inversion Method to Retrieve Aerosol Size Distributions for a Portable Ultrafine<br>Particle Sizer (PUPS). IEEE Access, 2021, 9, 2879-2889.                                                                                           | 4.2 | 4         |
| 107 | Research on information acquisition and manipulation representation (MR) method of traditional chinese medical massage (TCMM) based on multi-dimension force sensor. , 2015, , .                                                                      |     | 3         |
| 108 | Using Lidar, in-situ measurements and Trajectory Analysis to observe air pollution in Beijing, 2014. EPJ<br>Web of Conferences, 2016, 119, 24008.                                                                                                     | 0.3 | 3         |

| #   | Article                                                                                                                                                                                                                                     | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Feature issue introduction: light, energy and the environment, 2017. Optics Express, 2018, 26, A636.                                                                                                                                        | 3.4 | 3         |
| 110 | Design and evaluation of a condensation particle counter with high performance for single-particle counting. Instrumentation Science and Technology, 2020, 48, 212-229.                                                                     | 1.8 | 3         |
| 111 | Retrieval of refractive index of ultrafine single particle using hygroscopic growth factor obtained by<br>high sensitive surface plasmon resonance microscopy. Journal of Environmental Sciences, 2023, 126,<br>483-493.                    | 6.1 | 3         |
| 112 | Three-dimensional reconstruction of a leaking gas cloud based on two scanning FTIR remote-sensing imaging systems. Optics Express, 2022, 30, 25581.                                                                                         | 3.4 | 3         |
| 113 | Correlation study between suspended particulate matter and DOAS data. Advances in Atmospheric Sciences, 2006, 23, 461-467.                                                                                                                  | 4.3 | 2         |
| 114 | Development of respirable virtual-cyclone samplers. Journal of Occupational and Environmental<br>Hygiene, 2019, 16, 785-792.                                                                                                                | 1.0 | 2         |
| 115 | Analysis and Adjustment of Positioning Error of PSD System for Mobile SOF-FTIR. Sensors, 2019, 19, 5081.                                                                                                                                    | 3.8 | 2         |
| 116 | An active RH-controlled dry-ambient aerosol size spectrometer (DAASS) for the accurate measurement of ambient aerosol water content. Journal of Aerosol Science, 2021, 158, 105831.                                                         | 3.8 | 2         |
| 117 | Characterization of submicron aerosol particles in winter at Albany, New York. Journal of Environmental Sciences, 2022, 111, 118-129.                                                                                                       | 6.1 | 2         |
| 118 | Technical note: Real-time diagnosis of the hygroscopic growth micro-dynamics of nanoparticles with<br>Fourier transform infrared spectroscopy. Atmospheric Chemistry and Physics, 2022, 22, 3097-3109.                                      | 4.9 | 2         |
| 119 | Impacts of imperfect geometry structure on the nonlinear and chromatic dispersion properties of a microstructure fiber. Applied Optics, 2007, 46, 7771.                                                                                     | 2.1 | 1         |
| 120 | Research and design of resonant mass sensor based on tapered oscillating element. Proceedings of SPIE, 2009, , .                                                                                                                            | 0.8 | 1         |
| 121 | Underdetermined blind separation of three-way fluorescence spectra of PAHs in water.<br>Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 199, 80-85.                                                            | 3.9 | 1         |
| 122 | Heterogeneous reaction and condensation growth observation of NaCl/dicarboxylic acids<br>nanoparticles by aerosol time-of-flight mass spectrometer with water-based particle size amplifier.<br>Atmospheric Environment, 2021, 246, 118162. | 4.1 | 1         |
| 123 | Open-path Detection Of Atmospheric CH4 And N2O Based On Quantum Cascade Laser. , 2014, , .                                                                                                                                                  |     | 1         |
| 124 | Advances in coastal ocean boundary layer detection technology and equipment in China. Journal of Environmental Sciences, 2022, , .                                                                                                          | 6.1 | 1         |
| 125 | Design of On-Line Measurement System for Fine Particle Number Concentration of Vehicle Exhaust<br>Based on Diffusion Charge Theory. Lecture Notes in Electrical Engineering, 2019, , 1874-1884.                                             | 0.4 | 0         |
| 126 | Concentration-Emission Matrix (CEM) Spectroscopy Combined with GA-SVM: An Analytical Method to Recognize Oil Species in Marine. Molecules, 2020, 25, 5124.                                                                                  | 3.8 | 0         |

|     | Jiai                                                                                                                                                                                        | Jianguo Liu |           |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------|
|     |                                                                                                                                                                                             |             |           |
| #   | Article                                                                                                                                                                                     | IF          | CITATIONS |
| 127 | Development and Application of a Wide Dynamic Range and High Resolution Atmospheric Aerosol<br>Water-Based Supersaturation Condensation Growth Measurement System. Atmosphere, 2021, 12, 55 | 8. 2.3      | Ο         |